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ABSTRACT

A major challenge in modern reinforcement learning (RL) is efficient control
of dynamical systems from high-dimensional sensory observations. Learning
controllable embedding (LCE) is a promising approach that addresses this challenge
by embedding the observations into a lower-dimensional latent space, estimating
the latent dynamics, and utilizing it to perform control in the latent space. Two
important questions in this area are how to learn a representation that is amenable
to the control problem at hand, and how to achieve an end-to-end framework for
representation learning and control. In this paper, we take a few steps towards
addressing these questions. We first formulate a LCE model to learn representations
that are suitable to be used by a policy iteration style algorithm in the latent space.
We call this model control-aware representation learning (CARL). We derive a loss
function and three implementations for CARL. In the offline implementation, we
replace the locally-linear control algorithm (e.g., iLQR) used by the existing LCE
methods with a RL algorithm, namely model-based soft actor-critic, and show that
it results in significant improvement. In online CARL, we interleave representation
learning and control, and demonstrate further gain in performance. Finally, we
propose value-guided CARL, a variation in which we optimize a weighted version
of the CARL loss function, where the weights depend on the TD-error of the
current policy. We evaluate the proposed algorithms by extensive experiments on
benchmark tasks and compare them with several LCE baselines.

1 INTRODUCTION

Control of non-linear dynamical systems is a key problem in control theory. Many methods have been
developed with different levels of success in different classes of such problems. The majority of these
methods assume that a model of the system is known and its underlying state is low-dimensional and
observable. These requirements limit the usage of these techniques in controlling dynamical systems
from high-dimensional raw sensory data (e.g., image), where the system dynamics is unknown, a
scenario often seen in modern reinforcement learning (RL).

Recent years have witnessed a rapid development of a large arsenal of model-free RL algorithms,
such as DQN (Mnih et al., 2013), TRPO (Schulman et al., 2015), PPO (Schulman et al., 2017),
and SAC (Haarnoja et al., 2018), with impressive success in solving high-dimensional control
problems. However, most of this success has been limited to simulated environments (e.g., computer
games), mainly due to the fact that these algorithms often require a large number of samples from the
environment. This restricts their applicability in real-world physical systems, for which data collection
is often a difficult process. On the other hand, model-based RL algorithms, such as PILCO (Deisenroth
& Rasmussen, 2011), MBPO (Janner et al., 2019), and Visual Foresight (Ebert et al., 2018), despite
their success, still face difficulties in learning a model (dynamics) in a high-dimensional (pixel) space.

To address the problems faced by model-free and model-based RL algorithms in solving high-
dimensional control problems, a class of algorithms have been developed, whose main idea is to first
learn a low-dimensional latent (embedding) space and a latent model (dynamics), and then use this
model to control the system in the latent space. This class has been referred to as learning controllable
embedding (LCE) and includes algorithms, such as E2C (Watter et al., 2015), RCE (Banijamali et al.,
2018), SOLAR (Zhang et al., 2019), PCC (Levine et al., 2020), Dreamer (Hafner et al., 2020a;b),
PC3 (Shu et al., 2020), and SLAC (Lee et al., 2020). The following two properties are extremely
important in designing LCE models and algorithms. First, to learn a representation that is the most
suitable for the control problem at hand. This suggests incorporating the control algorithm in the
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process of learning representation. This view of learning control-aware representations is aligned with
the value-aware and policy-aware model learning, VAML (Farahmand, 2018) and PAML (Abachi
et al., 2020), frameworks that have been recently proposed in model-based RL. Second, to interleave
the representation learning and control, and to update them both, using a unifying objective function.
This allows to have an end-to-end framework for representation learning and control.

LCE methods, such as SOLAR, Dreamer, and SLAC, have taken steps towards the second objective
by performing representation learning and control in an online fashion. This is in contrast to offline
methods like E2C, RCE, PCC, and PC3 that learn a representation once and then use it in the entire
control process. On the other hand, methods like PCC and PC3 address the first objective by adding
a term to their representation learning loss function that accounts for the curvature of the latent
dynamics. This term regularizes the representation towards smoother latent dynamics, which are
suitable for the locally-linear controllers, e.g., iLQR (Li & Todorov, 2004), used by these methods.

In this paper, we take a few steps towards the above two objectives. We first formulate a LCE model
to learn representations that are suitable to be used by a policy iteration (PI) style algorithm in the
latent space. We call this model control-aware representation learning (CARL) and derive a loss
function for it that exhibits a close connection to the prediction, consistency, and curvature (PCC)
principle for representation learning (Levine et al., 2020). We derive three implementations of CARL:
offline, online, and value-guided. Similar to offline LCE methods, such as E2C, RCE, PCC, and PC3,
in offline CARL, we first learn a representation and then use it in the entire control process. However,
in offline CARL, we replace the locally-linear control algorithm (e.g., iLQR) used by these LCE
methods with a PI-style (actor-critic) RL algorithm. Our choice of RL algorithm is the model-based
implementation of soft actor-critic (SAC) (Haarnoja et al., 2018). Our experiments show significant
performance improvement by replacing iLQR with SAC. Online CARL is an iterative algorithm in
which at each iteration, we first learn a latent representation by minimizing the CARL loss, and then
perform several policy updates using SAC in this latent space. Our experiments with online CARL
show further performance gain over its offline version. Finally, in value-guided CARL (V-CARL),
we optimize a weighted version of the CARL loss function, in which the weights depend on the
TD-error of the current policy. This would help to further incorporate the control algorithm in the
representation learning process. We evaluate the proposed algorithms by extensive experiments on
benchmark tasks and compare them with several LCE baselines: PCC, SOLAR, and Dreamer.

2 PROBLEM FORMULATION

We are interested in learning control policies for non-linear dynamical systems, where the states
s ∈ S ⊆ Rns are not fully observed and we only have access to their high-dimensional observations
x ∈ X ⊆ Rnx , nx � ns. This scenario captures many practical applications in which we interact
with a system only through high-dimensional sensory signals, such as image and audio. We assume
that the observations x have been selected such that we can model the system in the observation space
using a Markov decision process (MDP)1 MX = 〈X ,A, r, P, γ〉, where X and A are observation
and action spaces; r : X ×A → R is the reward function with maximum value Rmax, defined by the
designer of the system to achieve the control objective;2 P : X×A → P(X ) is the unknown transition
kernel; and γ ∈ (0, 1) is the discount factor. Our goal is to find a mapping from observations to control
signals, µ : X → P(A), with maximum expected return, i.e., J(µ) = E[

∑∞
t=0 γ

tr(xt, at) | P, µ].

Since the observations x are high-dimensional and the observation dynamics P is unknown, solving
the control problem in the observation space may not be efficient. As discussed in Section 1, the class
of learning controllable embedding (LCE) algorithms addresses this by learning a low-dimensional
latent (embedding) space Z ⊆ Rnz , nz � nx, together with a latent dynamics, and controlling
the system there. The main idea behind LCE is to learn an encoder E : X → P(Z), a latent space
dynamics F : Z × A → P(Z), and a decoder D : Z → P(X ),3 such that a good or optimal
controller (policy) in Z performs well in the observation space X . This means that if we model
the control problem in Z as a MDPMZ = 〈Z,A, r̄, F, γ〉 and solve it using a model-based RL
algorithm to obtain a policy π : Z → P(A), the image of π back in the observation space, i.e.,

1A method to ensure observations are Markovian is to buffer them for several time steps (Mnih et al., 2013).
2For example, in a goal tracking problem in which the agent (robot) aims at finding the shortest path to reach

the observation goal xg (the observation corresponding to the goal state sg), we may define the reward for each
observation x as the negative of its distance to xg , i.e., −‖x− xg‖2.

3Some recent LCE models, such as PC3 (Shu et al., 2020), are advocating latent models without a decoder.
Although we are aware of the merits of such approach, we use a decoder in the models proposed in this paper.
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Algorithm 1 Latent Space Learning with Policy Iteration (LSLPI)

1: Inputs: E(0), F (0), D(0);
2: Initialization: µ(0) = random policy; D ← samples generated from µ(0);
3: for i = 0, 1, . . . do
4: Compute π(i) as the projection of µ(i) in the latent space w.r.t. DKL

(
π ◦ E || µ

)
; # µ(i) ≈ π(i) ◦ E(i)

5: Compute the value function of π(i) and set V (i) = Vπ(i) ; # policy evaluation (critic)
6: Compute the greedy policy w.r.t. V (i) and set π(i)

+ = G[V (i)]; # policy improvement (actor)
7: Set µ(i+1) = π

(i)
+ ◦ E(i); # project the improved policy π(i)

+ back into the observation space
8: Learn (E(i+1), F (i+1), D(i+1), r̄(i+1)) from D, π(i), and π(i)

+ ; # representation learning
9: Generate samples D(i+1) = {(xt, at, rt, xt+1)}nt=1 from µ(i+1); D ← D ∪D(i+1);

10: end for

(π ◦E)(a|x) =
∫
z
dE(z|x)π(a|z), should have high expected return. Thus, the loss function to learn

Z and (E,F,D) from observations {(xt, at, rt, xt+1)} should be designed to comply with this goal.

This is why in this paper, we propose a LCE framework that tries to incorporate the control algorithm
used in the latent space in the representation learning process. We call this model, control-aware rep-
resentation learning (CARL). In CARL, we set the class of control (RL) algorithms used in the latent
space to approximate policy iteration (PI), and more specifically to soft actor-critic (SAC) (Haarnoja
et al., 2018). Before describing CARL in details in the following sections, we present a number of
useful definitions and notations here.

For any policy µ in X , we define its value function Uµ and Bellman operator Tµ as

Uµ(x) = E[

∞∑
t=0

γtrµ(xt) | Pµ, x0 = x], Tµ[U ](x) = Ex′∼Pµ(·|x)[rµ(x) + γU(x′)], (1)

for all x∈X and U : X →R, where rµ(x)=
∫
a
dµ(a|x)r(x, a) and Pµ(x′|x)=

∫
a
dµ(a|x)P (x′|x, a)

are the reward function and dynamics induced by µ. Similarly, for any policy π in Z , we de-
fine its induced reward function and dynamics as r̄π(z) =

∫
a
dπ(a|z)r̄(z, a) and Fπ(z′|z) =∫

a
dπ(a|z)F (z′|z, a). We also define its value function Vπ and Bellman operator Tπ as

Vπ(z) = E[

∞∑
t=0

γtr̄π(zt) | Fπ, z0 = z], Tπ[V ](z) = Ez′∼Fπ(·|z)[r̄π(z) + γV (z′)]. (2)

For any policy π and value function V in the latent space Z , we denote by π ◦ E and V ◦ E, their
image in the observation space X , given encoder E, and define them as

(π ◦ E)(a|x) =

∫
z

dE(z|x)π(a|z), (V ◦ E)(x) =

∫
z

dE(z|x)V (z). (3)

3 CARL MODEL: A CONTROL PERSPECTIVE

In this section, we formulate our LCE model, which we refer to as control-aware representation
learning (CARL). As described in Section 2, CARL is a model for learning a low-dimensional latent
space Z and the latent dynamics, from data generated in the observation space X , such that this
representation is suitable to be used by a policy iteration (PI) style algorithm in Z . In order to derive
the loss function used by CARL to learn Z and its dynamics, i.e., (E,F,D, r̄), we first describe how
the representation learning can be interleaved with PI in Z . Algorithm 1 contains the pseudo-code of
the resulting algorithm, which we refer to as latent space learning policy iteration (LSLPI).

Each iteration i of LSLPI starts with a policy µ(i) in the observation space X , which is the mapping
of the improved policy in Z in iteration i − 1, i.e., π(i−1)

+ , back in X through the encoder E(i−1)

(Lines 6 and 7). We then compute π(i), the current policy in Z , as the image of µ(i) in Z through
the encoder E(i) (Line 4). Note that E(i) is the encoder learned at the end of iteration i− 1 (Line 8).
We then use the latent space dynamics F (i) learned at the end of iteration i − 1 (Line 8), and
first compute the value function of π(i) in the policy evaluation or critic step, i.e., V (i) = Vπ(i)

(Line 5), and then use V (i) to compute the improved policy π(i)
+ , as the greedy policy w.r.t. V (i),
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i.e., π(i+1) = G[V (i)], in the policy improvement or actor step (Line 6). Using the samples in the
buffer D, together with the current policies in Z , i.e., π(i) and π(i)

+ , we learn the new representation
(E(i+1), F (i+1), D(i+1), r̄(i+1)) (Line 8). Finally, we generate samples D(i+1) by following µ(i+1),
the image of the improved policy π(i)

+ back in X using the old encoder E(i) (Line 7), and add it to the
buffer D (Line 9), and the algorithm iterates. It is important to note that both critic and actor operate
in the low-dimensional latent space Z .

LSLPI is a PI algorithm in Z . However, what is desired is that it also acts as a PI algorithm in X ,
i.e., it results in (monotonic) policy improvement in X , i.e., Uµ(i+1) ≥ Uµ(i) . Therefore, we define
the representation learning loss function for CARL, such that it ensures LSLPI also results in policy
improvement in X . The following theorem, whose proof is reported in Appendix A, shows the
relationship between the value functions of two consecutive polices generated by LSLPI in X .

Theorem 1. Let µ, µ+, π, π+, and (E,F,D, r̄) be the policies µ(i), µ(i+1), π(i), π(i)
+ , and the

learned latent representation (E(i+1), F (i+1), D(i+1), r̄(i+1)) at iteration i of the LSLPI algorithm
(Algorithm 1). Then, the following holds for the value functions of µ and µ+:

Uµ+
(x) ≥ Uµ(x)−

( 1

1− γ
∑

π̃∈{π,π+}

Edγ
π̃◦E

[∆(E,F,D, r̄, π̃, ·)|x0 = x]

+

√
2γRmax

1− γ
· Edγπ◦E [

√
DKL

(
(π ◦ E)(·′|·) || µ(·′|·)

)︸ ︷︷ ︸
Lreg(E,µ,π,·)

|x0 = x]
)
,

(4)

for all x ∈ X , where dγπ◦E(x′|x0) = (1 − γ) ·
∑∞
`=0 γ

`P(x` = x′|x0; π ◦ E) is the γ-stationary
distribution induced by policy π ◦ E, and the error term ∆ for a policy π is given by

∆(E,F,D, r̄, π, x) =
Rmax

1− γ

(I)=Led(E,D,x)︷ ︸︸ ︷√
−1

2

∫
z

dE(z|x) logD(x|z) + 2

(II)=Lr(E,̄r,π,x)︷ ︸︸ ︷∣∣rπ◦E(x)−
∫
z

dE(z|x)r̄π(z)
∣∣ (5)

+
γRmax√
2(1− γ)

(√
DKL

(
Pπ◦E(·|x) || (D ◦ Fπ ◦ E)(·|x)

)︸ ︷︷ ︸
(III)=Lp(E,F,D,π,x)

+
√
DKL

(
(E ◦ Pπ◦E)(·|x) || (Fπ ◦ E)(·|x)

)︸ ︷︷ ︸
(IV)

)
.

It is easy to see that LSLPI guarantees (policy) improvement in X , if the terms in the parentheses
on the RHS of (4) are zero. We now describe these terms. The last term on the RHS of (4) is the
KL between π(i) ◦ E and µ(i) = π(i) ◦ E(i). This term can be seen as a regularizer to keep the new
encoder E close to the old one E(i). The four terms in (5) are: (I) The encoding-decoding error to
ensure x ≈ (D ◦ E)(x); (II) The error that measures the mismatch between the reward of taking
action according to policy π ◦ E at x ∈ X , and the reward of taking action according to policy π at
the image of x in Z under E; (III) The error in predicting the next observation through paths in X
and Z . This is the error between x′ and x̂′ shown in Fig. 1(a); and (IV) The error in predicting the
next latent state through paths in X and Z . This is the error between z′ and z̃′ shown in Fig. 1(b).

Figure 1: (a) Paths from the current observation x to the next one, (left) in X and (right) through
Z . (b) Paths from the current observation x to the next latent state, (left) through X followed by
encoding and (right) starting with encoding and then through Z .

Representation Learning in CARL Theorem 1 provides us with a recipe (loss function) to learn
the latent space Z and (E,F,D, r̄). In CARL, we propose to learn a representation for which
the terms in the parentheses on the RHS of (4) are small. As mentioned earlier, the second term,
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Lreg(E,µ, π, x), can be considered as a regularizer to keep the new encoderE close to the old oneE−,
when the policy µ is given by π ◦ E−. Term (I) minimizes the reconstruction error between encoder
and decoder, which is standard for training auto-encoders (Kingma & Welling, 2013). Term (II) that
measures the mismatch between rewards can be kept small, or even zero, if the designer of the system
selects the rewards in a compatible way4. Although CARL allows us to learn a reward function in the
latent space, similar to several other LCE works (Watter et al., 2015; Banijamali et al., 2018; Levine
et al., 2020; Shu et al., 2020), in this paper, we assume that a compatible latent reward function is
given. Terms (III) and (IV) are the equivalent of the prediction and consistency terms in PCC (Levine
et al., 2020) for a particular latent space policy π. Since PCC has been designed for an offline
setting (i.e., one-shot representation learning and control), its prediction and consistency terms are
independent of a particular policy and are defined for state-action pairs. While CARL is designed for
an online setting (i.e., interleaving representation learning and control), and thus, its loss function at
each iteration depends on the current latent space policies π and π+. As we will see in Section 4, in our
offline implementation of CARL, these two terms are similar to prediction and consistency terms in
PCC. Note that (IV) is slightly different than the consistency term in PCC. However, if we upper-bound
it using Jensen inequality: (IV) ≤ Lc(E,F, π, x) :=

∫
x′∈X dPπ◦E(x′|x) ·DKL

(
E(·|x′) || (Fπ ◦E)(·|x)

)
,

the resulted loss, Lc(E,F, π, x), would be similar to the consistency term in PCC. Similar to PCC,
we also add a curvature loss to the loss function of CARL to encourage having a smoother latent
space dynamics Fπ . Putting all these terms together, we obtain the following loss function for CARL:

min
E,F,D

∑
x∼D

λedLed(E,D, x) + λpLp(E,F,D, π, x) + λcLc(E,F, π, x)

+ λcurLcur(F, π, x) + λregLreg(E,µ, π, x),

(6)

where (λed, λp, λc, λcur, λreg) are hyper-parameters5 of the algorithm, (Led, Lp) are the encoding-
decoding and prediction losses defined in (5), Lc is the consistency loss defined above, Lcur =
Ex,u[Eε

[
fZ(z+ εz, u+ εu)− fZ(z, u)− (∇zfZ(z, u) · εz +∇ufZ(z, u) · εu)‖22

]
| E] is the curvature loss

that regulates the 2nd derivative of fZ , the mean of latent dynamics F , in which εz, εu are standard
Gaussian noise, and Lreg is the regularizer that ensures the new encoder remains close to the old one.

4 DIFFERENT IMPLEMENTATIONS OF CARL

The CARL loss function in (6) introduces an optimization problem that takes a policy π in Z as
input and learns a representation suitable for its evaluation and improvement. To optimize this loss
in practice, similar to the PCC model (Levine et al., 2020), we define P̂ = D ◦ Fπ ◦ E as a latent
variable model that is factorized as P̂ (xt+1, zt, ẑt+1|xt, π) = P̂ (zt|xt)P̂ (ẑt+1|zt, π)P̂ (xt+1|ẑt+1),
and use a variational approximation to the interactable negative log-likelihood of the loss terms in (6).
The variational bounds for these terms can be obtained similar to Eqs. 6 and 7 in Levine et al. (2020).
Below we describe three instantiations of the CARL model in practice. Implementation details can be
found in Algorithm 2 in Appendix D. Although CARL is compatible with most PI-style (actor-critic)
RL algorithms, we choose soft actor-critic (SAC) (Haarnoja et al., 2018) as its control algorithm.
Since most actor-critic algorithms are based on first-order gradient updates, as discussed in Section 3,
we regularize the curvature of the latent dynamics F (see Eqs. 8 and 9 in Levine et al. 2020) in CARL
to improve its empirical stability and performance in policy learning.

1. Offline CARL We first implement CARL in an offline setting, where we generate a (relatively)
large batch of observation samples {(xt, at, rt, xt+1)}Nt=1 using an exploratory (e.g., random) policy.
We then use this batch to optimize the CARL’s loss function (6) via the variational approximation
scheme described above, and learn a latent representation Z and (E,F,D). Finally, we solve the
decision problem in Z using a model-based RL algorithm, which in our case is model-based SAC6.
The learned policy π̂∗ inZ is then used to control the system from observations as at ∼ (π̂∗◦E)(·|xt).
This is the setting that has been used in several recent LCE works, such as E2C (Watter et al., 2015),
RCE (Banijamali et al., 2018), PCC (Levine et al., 2020), and PC3 (Shu et al., 2020). Our offline

4For example, in goal-based RL problems, a compatible reward function can be the one that measures the
negative distance between a latent state and the image of the goal in the latent space.

5Theorem 1 provides a high-level guideline for selecting the hyper-parameters of the loss function: λed =
2Rmax/(1− γ)2, λc = λp =

√
2γRmax/(1− γ)2, and λreg =

√
2γRmax/(1− γ).

6By model-based SAC, we refer to learning a latent policy with SAC using synthetic trajectories generated
by unrolling the learned latent dynamics model F , similar to the MBPO algorithm (Janner et al., 2019).
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implementation is different than those in which 1) we replace their locally-linear control algorithm,
namely iterative LQR (iLQR) (Li & Todorov, 2004), with model-based SAC, which results in
significant performance improvement, as shown in Section 5, and 2) we optimize the CARL loss
function, that despite close connection, is still different than the one used by PCC.

The CARL loss function presented in Section 3 has been designed for an online setting in which
at each iteration, it takes a policy as input and learns a representation that is suitable for evaluating
and improving this policy. However, in the offline setting, the learned representation should be good
for any policy generated in the course of running the PI-style control algorithm. Therefore, we
marginalize out the policy from the (online) CARL’s loss function and use the RHS of the following
corollary (proof in Appendix B) to construct the CARL loss function used in our offline experiments.
Corollary 2. Let µ and µ+ be two consecutive policies inX generated by a PI-style control algorithm
in the latent space constructed by (E,F,D,r̄). Then, the following holds for the value functions of µ
and µ+, where ∆ is defined by (5) (in modulo replacing sampled action a∼π◦E with action a):

Uµ+
(x) ≥ Uµ(x)− 2

1− γ
· max
x,∈X ,a∈A

∆(E,F,D, r̄, a, x), ∀x ∈ X . (7)

2. Online CARL In the online implementation of CARL, at each iteration i, the current policy π(i)

is the improved policy of the last iteration, π(i−1)
+ . We first generate a relatively (to offline CARL)

small batch of samples using the image of the current policy in X , i.e., µ(i) = π(i) ◦E(i−1), and then
learn a representation (E(i), F (i), D(i)) suitable for evaluating and improving the image of µ(i) in Z
under the new encoder E(i). This means that with the new representation, the current policy that was
the image of µ(i) in Z under E(i−1), should be replaced by its image π(i) under the new encoder,
i.e., π(i) ◦E(i) ≈ µ(i). In online CARL, we address this by the following policy distillation step in
which we minimize the following loss:7

π(i) ∈ arg min
π

∑
x∼D

DKL
(
(π ◦ E(i))(·|x) || (π(i−1)

+ ◦ E(i−1))(·|x)
)
. (8)

After the current policy π(i) is set, we perform multiple steps of (model-based) SAC in Z using the
current model, (F (i), r̄(i)), and then send the resulting policy π(i)

+ to the next iteration.

3. Value-Guided CARL (V-CARL) While Theorem 1 shows that minimizing the loss in (6) guar-
antees performance improvement, this loss does not contain any information about the performance
of the current policy µ, and thus, the LCE model trained with this loss may have low accuracy in
regions of the latent space that are crucial for learning good RL policies. In V-CARL, we tackle this
issue by modifying the loss function in a way that the resulted LCE model has more accuracy in
regions with higher anticipated future returns.

To derive the V-CARL’s loss function, we use the variational model-based policy optimization
(VMBPO) framework by Chow et al. (2020) in which the optimal dynamics for model-based
RL can be expressed in closed-form as P ∗(x′|x, a) = P (x′|x, a) · exp

(
τ
γ

(r(x, a) + γŨµ(x′) −
W̃µ(x, a))

)
, where Ũµ(x) := 1

τ
logE

[
exp

(
τ
∑∞
t=0 γ

trµ,t
)
|Pµ, x0 = x

]
and W̃µ(x, a) := r(x, a) +

γ
τ

logEx′∼P (·|x,a) [exp(τUµ(x′))] are the optimistic value and action-value functions8 of policy µ,
and τ > 0 is a temperature parameter. Note that in the VMBPO framework, the optimal dynamics
P ∗ is value-aware, because it re-weighs P with an exponential-twisting weight exp( τ

γ
w(x, a, x′)),

where w(x, a, x′) := r(x, a) + γŨµ(x′)− W̃µ(x, a) is the temporal difference (TD) error.

In V-CARL, we use the VMBPO framework to modify the CARL’s prediction loss Lp(E,F,D, π, x).
Since the regularizer loss Lreg(E,µ, π, x) in CARL forces policies π◦E and µ to be close to each other,
we may replace the transition dynamics Pπ◦E with Pµ in Lp. This makes minimizing Lp equivalent to
maximizing the log-likelihood

∫
x′ dPµ(x′|x) · log(D ◦ Fπ ◦ E)(x′|x). Finally, we replace Pµ with P ∗µ

in this log-likelihood and obtain
∫
a
dµ(a|x)

∫
x′ dP (x′|x, a) · exp( τ

γ
·w(x, a, x′)) · log(D ◦Fπ ◦E)(x′|x),

which is a weighted (by the exponential TD w(x, a, x′)) log-likelihood function (w.r.t. P ). Note

7Our experiments reported in Appendix F.1 show that adding distillation improves the performance in online
CARL. Thus, all our results for online CARL and V-CARL, unless mentioned, are with policy distillation.

8We refer to Ũµ as the optimistic value function (Ruszczyński & Shapiro, 2006), because it models the right
tail of the return via the exponential utility ρτ (U(·)|x, a) = 1

τ
logEx′∼P (·|x,a)[exp(τ · U(x′))].
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that this weight depends on the optimistic value functions Ũµ and W̃µ. When τ > 0 is small
(see Appendix C for more details), these value functions can be approximated by their standard
counterparts, i.e., Ũµ(x)≈Uµ(x) and W̃µ(x, a)≈Wµ(x, a) :=r(x, a)+

∫
x′dP (x′|x, a)Uµ(x′), which can

be further approximated by their latent-space counterparts, i.e., Uµ(x) ≈ (Vπ ◦ E)(x) and Wµ(x, a) ≈
(Qπ ◦ E)(x, a), according to Lemma 5 in Appendix A.1. Since the latent reward function r̄ is defined
such that r(x, a) ≈ (r̄ ◦E)(x, a), we may write the TD-error w(x, a, x′) in terms of the encoder E and
the latent value functions as ŵ(x, a, x′) :=

∫
z,z′ dE(z|x) · dE(z′|x′) · (r̄(z, a)−Qπ(z, a) + γVπ(z′)).

5 EXPERIMENTAL RESULTS

In this section, we experiment with the following continuous control domains: (i) Planar System,
(ii) Inverted Pendulum (Swingup), (iii) Cartpole, (iv) Three-link Manipulator (3-Pole), and compare
the performance of our CARL algorithms with three LCE baselines: PCC (Levine et al., 2020),
SOLAR (Zhang et al., 2019), SLAC (Lee et al., 2020), and two implementations of Dreamer (Hafner
et al., 2020a) (described below).9 These tasks have underlying start and goal states that are “not”
observable, instead, the algorithms only have access to the start and goal observations. We report
the detailed setup of the experiments in Appendix E, in particular, the description of the domains in
Appendix E.1 and the implementation of the algorithms in Appendix E.3.

To evaluate the performance of the algorithms, similar to Levine et al. (2020), we report the %-
time spent in the goal. The initial policy that is used for data generation is uniformly random (see
Appendix E.2 for more details). To measure performance reproducibility for each experiment, we
(i) train 25 models, and (ii) perform 10 control tasks for each model. For SOLAR, due to its high
computation cost, we only train and evaluate 10 different models. Besides the average results, we
also report the results from the best LCE models, averaged over the 10 control tasks.

General Results Table 1 shows the means and standard errors of %-time spent in goal, averaged
over all models and control tasks, and averaged over all control tasks for the best model. To compare
data efficiency, we also report the number of samples required to train the latent space and controller
in each algorithm. We also show the training curves (performance vs. number of samples) of the
algorithms in Fig. 2. We report more experiments and ablation studies in Appendix F.

Below summarizes our main observations of the experiments. First, offline CARL that uses model-
based SAC as its control algorithm achieves significantly better performance than PCC that uses
iLQR in all tasks. This can be attributed to the advantage that SAC is more robust and effective in non-
(locally)-linear environments. We report more detailed comparison between PCC and offline CARL
in Appendix F.3, where we explicitly compare their control performance and latent representation
maps. Second, in all tasks, online CARL is more data-efficient than its offline counterpart, i.e., it
achieves similar or better performance with fewer samples. In particular, online CARL is notably
superior in Planar, Cartpole, and Swingup, in which it achieves similar performance to offline CARL
with 2, 2.5, and 4 times less samples, respectively (see Fig. 2). In Appendix F.3, we show how the
latent representation of online CARL progressively improves through the iterations of the algorithm
(in particular, see Fig. 11). Third, in the simpler tasks (Planar, Swingup, Cartpole), V-CARL
performs even better than online CARL. This corroborates our hypothesis that CARL can achieve
extra improvement when its LCE model is more accurate in the regions of the latent space with higher
temporal difference (regions with higher anticipated future return). In 3-pole, the performance of
V-CARL is worse than online CARL. This is likely due to the instability in representation learning
resulted from sample variance amplification by the exponential-TD weight. Fourth, SOLAR requires
significantly more samples to learn a reasonable latent space for control, and with limited data it
fails to converge to a good policy. Even with the fine-tuned latent space from Zhang et al. (2019), its
performance is incomparable to those of CARL variants and Dreamer. We report more experiments
with SOLAR in Appendix F.5, in which we show that SOLAR can perform better, especially in Planar
when we fix the start and goal locations. However, the improved performance is still incomparable
with those of CARL and Dreamer. Fifth, we include an ablation study in Appendix F.2 to demonstrate
how each term of the CARL’s loss function impacts policy learning. It shows the importance of the
prediction and consistency terms, without which the resulting algorithms struggle, and the (relatively)
minor role of the curvature and encoder-decoder terms in the performance of the algorithms.

9We did not include E2C and RCE in our experiments, because Levine et al. (2020) has previously shown
that PCC outperforms them.
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Dreamer As described in Section 2, most LCE algorithms, including E2C, PCC, and CARL
variants, assume the observation space X is selected such that the system is Markovian there. In
contrast, Dreamer does not make this assumption and has been designed for more general class of
control problems that can be modeled as POMDPs. Thus, it is expected that it performs inferior
(requires more samples to achieve the same performance) to CARL when the system is Markov in
the observation space. Moreover, CARL and other LCE methods define the reward as the negative
distance to the goal in the latent space. This cannot be done in Dreamer, where the encoder is an
RNN that takes an entire observation trajectory as input. To address this, we propose two methods
to train the Dreamer’s reward function in the latent space, which we refer to as Dreamer Pixel and
Dreamer Oracle. While Dreamer Pixel uses the negative distance to the goal in the observation
space X as the signal to train the reward function, Dreamer Oracle uses the negative distance in the
(unobserved) underlying state space S. Thus, it is more fair to compare the CARL algorithms with
Dreamer Pixel than Dreamer Oracle that has the advantage of having access to the underlying state
space (see Appendix F.6 for more details). As it was expected, our results show that although both
Dreamer’s implementations learn reasonably-performing policies for most tasks (except Planar), they
require twice to 100-times more samples to achieve the same performance as the CARL algorithms.
We report longer (more samples) experiments with Dreamer on all tasks in Appendix F.6 (Fig. 12).

(a) Planar (b) Swingup (c) Cartpole (d) Three-pole

Figure 2: Training curves of offline CARL, online CARL, V-CARL, and two implementations of
Dreamer. The shaded region represents mean ± standard error.

Environment Algorithm Number of Samples Avg %-Goal Best %-Goal
Planar PCC 5000 38.85± 2.45 62.5± 10.42
Planar Offline CARL 5000 63.43± 2.78 79.51± 0.38
Planar Online CARL 3072 68.03± 1.69 79.02± 0.38
Planar V-CARL 3200 71.05± 1.46 79.51± 0.38
Planar SOLAR 5000 (VAE) + 16000 (Control) 5.82± 2.50 9.13± 3.54

Swingup PCC 5000 86.60± 1.00 97.40± 0.61
Swingup Offline CARL 5000 88.43± 2.02 98.50± 0.0
Swingup Online CARL 1408 95.04± 0.96 98.50± 0.0
Swingup V-CARL 1408 96.50± 0.25 98.50± 0.0
Swingup SOLAR 5200 (VAE) + 40000 (Control) 16.1± 0.69 22.45± 1.96
Swingup Dreamer Pixel 180895 70.35± 0.62 98.5± 0.0
Swingup Dreamer Oracle 183084 94.65± 0.20 98.25± 0.0

Cartpole PCC 10000 83.64± 0.63 100.0± 0.0
Cartpole Offline CARL 10000 91.11± 1.50 100.0± 0.0
Cartpole Online CARL 5120 95.34± 1.17 100.0± 0.0
Cartpole V-CARL 5120 95.79± 1.06 100.0± 0.0
Cartpole SOLAR 5000 (VAE) + 40000 (Control) 10.61± 2.58 12.33± 2.96
Cartpole Dreamer Pixel 96941 95.59± 3.77 100.0± 0.0
Cartpole Dreamer Oracle 14474 97.77± 1.525 100.0± 0.0
Three-pole PCC 4096 4.41± 0.75 36.20± 7.06
Three-pole Offline CARL 4096 63.20± 1.77 88.55± 0.0
Three-pole Online CARL 2944 62.17± 2.28 90.05± 0.0
Three-pole V-CARL 2816 55.06± 2.42 89.05± 0.0
Three-pole SOLAR 2000 (VAE) + 20000 (Control) 0± 0 0± 0
Three-pole Dreamer Pixel 6245 61.93± 2.30 90.00± 0.0
Three-pole Dreamer Oracle 6245 71.07± 2.45 88.40± 0.0

Table 1: Mean ± standard error results (%-goal) and samples used for different LCE algorithms.

Results with Environment-biased Sampling In the previous experiments, all the online LCE
algorithms are warm-started with data collected by a uniformly random policy over the entire
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environment. With sufficient data the latent dynamics is accurate enough on most parts of the state
space for control, therefore we do not observe a significant difference between online CARL and V-
CARL. To further illustrate the advantage of V-CARL over online CARL, we modify the experimental
setting by gathering initial samples only from a specific region of the environment (see Appendix E.1
for more details). Fig. 3 shows the learning curves of online CARL and V-CARL in this case. As
expected, with biased data, both algorithms experience a certain level of performance degradation,
yet, V-CARL clearly outperforms online CARL — this verifies our conjecture that control-aware
LCE models are more robust to initial data distribution and superior in policy optimization.

(a) Planar (b) Swingup (c) Cartpole (d) Three-pole

Figure 3: Training curves of Online CARL and V-CARL with environment-biased initial samples.

6 CONCLUSIONS

In this paper, we argued for incorporating control in the representation learning process and for the
interaction between control and representation learning in learning controllable embedding (LCE)
algorithms. We proposed a LCE model called control-aware representation learning (CARL) that
learns representations suitable for policy iteration (PI) style control algorithms. We proposed three
implementations of CARL that combine representation learning with model-based soft actor-critic
(SAC), as the controller, in offline and online fashions. In the third implementation, called value-
guided CARL, we further included the control process in representation learning by optimizing a
weighted version of the CARL loss function, in which the weights depend on the TD-error of the
current policy. We evaluated the proposed algorithms on benchmark tasks and compared them with
several LCE baselines. The experiments show the importance of SAC as the controller and of the
online implementation. Future directions include 1) investigating other PI-style algorithms in place
of SAC, 2) developing LCE models suitable for value iteration style algorithms, and 3) identifying
other forms of bias for learning an effective embedding and latent dynamics.
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A PROOF OF THEOREM 1

In this section, we prove the policy improvement bound (characterized by Theorem 1) in the observa-
tion space. First, we provide several intermediate results (Lemma 5 and Theorem 7) on approximate
latent policy evaluation in Appendix A.1, which will be later utilized to prove the main theorem of
policy improvement (Theorem 1) in Appendix A.2.

Theorem 1 characterizes the policy improvement bound of the CARL algorithm in the observation
space. Here the main contribution is to connect the CARL algorithm, whose policy optimization is in
the latent space, with the observation-space MDP performance. To the best of our knowledge, this
is novel because standard policy iteration algorithm only guarantees performance on the same state
space that it is applied to, while in this case we execute policy optimization in one space (the latent
space Z), while the performance guarantee needs to be in another space (the observation space X ).
The main challenge here is to keep track of the error propagation due to the discrepancy between the
observation-state evolution and the latent-state evolution paths when bounding the difference of the
corresponding Bellman residuals in the Z and X spaces, and it is tackled by the intermediate results,
namely Lemma 5 and Theorem 7, in Appendix A.1.

A.1 APPROXIMATE LATENT POLICY EVALUATION

We first draw a connection between the approximate policy evaluation procedure in the observation
and latent spaces. For any observation space value function U : X → R, observation x ∈ X , and
policy µ, the µ-induced Bellman operator is defined as:

Tµ[U ](x) :=

∫
a

dµ(a|x)

∫
x′
dP (x′|x, a) ·

(
r(x, a) + γ · U(x′)

)
.

Using the LCE model (E,F,D), we define the approximate µ-induced Bellman operator as

T ′µ[U ](x) :=

∫
z

dE(z|x) ·
∫
a

dπ(a|z) ·
∫
z′
dF (z′|z, a) ·

∫
x′
dD(x′|z′) ·

(
r(x, a) + γU(x′)

)
,

where the latent space policy π is defined as µ = π ◦ E. Note that π ◦ E corresponds to sampling
a latent state z from the encoder E(·|x), followed by taking an action according to the latent space
policy π, a transition in the latent space according to the latent dynamics F , and finally projecting
back the resulting latent state into the observation space using the decoder D.

For any latent space value function V : Z → R, latent state z ∈ Z , and policy π, the π-induced
Bellman operator is defined as

Tπ[V ](z) :=

∫
a

dπ(a|z) ·
∫
z′
dF (z′|z, a) ·

(
r̄(z, a) + γ · V (z′)

)
,

where r̄ is a latent reward function that is defined as an approximation of the observation reward
function r as |

∫
a

∫
z
dπ(a|z)dE(z|x)(r̄(z, a)− r(x, a))| ≈ 0.

Using Equation (8) of Farahmand et al. (2017), we bound the difference between the exact and
approximate µ-induced Bellman operator (the first inequality in the following expression) as∣∣Tµ[U ](x)− T ′µ[U ](x)

∣∣ ≤ γ‖U‖∞ ·DTV

(
Pπ◦E(·|x)||(D ◦ F ◦ π ◦ E)(·|x)

)
(9)

(a)
≤ γ‖U‖∞√

2
·

√
DKL

(
Pπ◦E(·|x)||(D ◦ F ◦ π ◦ E)(·|x)

)
, ∀x ∈ X ,

where ‖U‖∞ = maxx∈X |U(x)| and (a) is by the Pinsker inequality. Note that in a γ-discounted
MDP, whose immediate reward is bounded by magnitude Rmax, any value function in this MDP is
bounded by Rmax/(1 − γ), i.e., ‖U‖∞ ≤ Rmax/(1 − γ), ∀U . This implies that the difference of
these Bellman operators can be bounded by a prediction loss.

We can upper-bound the TV-divergence in (9) without dependency on the policy π, by considering
the worst-case actions as

DTV

(
Pπ◦E(·|x)||(D ◦ F ◦ π ◦ E)(·|x)

)
≤ max

a∈A
DTV

(
P (·|x, a)||(D ◦ F ◦ E)(·|x, a)

)
(10)

≤ 1√
2

max
a∈A

√
DKL

(
P (·|x, a)||(D ◦ F ◦ E)(·|x, a)

)
.
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This upper bound corresponds to the prediction loss in PCC (Levine et al., 2020).

We now prove a lemma that relates the observation approximate Bellman residual
∣∣T ′µ[U ](x)− U(x)

∣∣
with the latent Bellman residual

∫
z
dE(z|x) |Tπ[V ](z)− V (z)| at an arbitrary observation x ∈ X ,

where the latent policy π and value function V are related to their observation counterparts µ and U
as µ = π ◦ E, i.e., µ(a|x) =

∫
z
dE(z|x)π(a|z), and V = U ◦D, i.e., V (z) =

∫
x̃
dD(x̃|z)U(x̃).

Lemma 3. For any observation x ∈ X , encoder-transition-decoder tuple (E,F,D), latent policy π
and value function U , the observation approximate and latent Bellman residuals are related to each
other as∣∣T ′µ[U ](x)− U(x)

∣∣ ≥ ∣∣∣∣∫
z∈Z

dE(z|x)(Tπ[V ](z)− V (z))

∣∣∣∣ (11)

−
∣∣∣∣∫
z

dE(z|x)

∫
a

dπ(a|z)(r(x, a)− r̄(z, a))

∣∣∣∣− Rmax

1− γ

√
−1

2

∫
z

dE(z|x) logD(x|z), ∀x ∈ X .

where µ = π ◦ E and V = U ◦D.

Proof. Using the definitions of Bellman operators, we may write the following chain of inequalities:∣∣∣∣T ′µ[U ](x)−
∫
z∈Z

dE(z|x)Tπ[V ](z)

∣∣∣∣
(a)
≤
∣∣∣∣∫
z

dE(z|x)

∫
a

dπ(a|z) ·
(∫

x′

∫
z′
dD(x′|z′) · dF (z′|z, a) · γ · U(x′)−

∫
z′
dF (z′|z, a) · γ · V (z′)

)∣∣∣∣
+

∣∣∣∣∫
z

dE(z|x)

∫
a

dπ(a|z)
∫
z′
dF (z′|z, a) ·

(∫
x′
dD(x′|z′)r(x, a)− r̄(z, a)

)∣∣∣∣
(b)
≤
∣∣∣∣∫
z

dE(z|x)

∫
a

dπ(a|z)
(
r(x, a)− r̄(z, a)

)∣∣∣∣ , (12)

where (a) is from the definitions of T ′µ and Tπ , and the triangular inequality, and (b) comes from the
fact that the first term in the first inequality is zero because V (z) =

∫
x̃
dD(x̃|z)U(x̃).

Now we bound the observation approximate Bellman residual at any observation x ∈ X as∣∣∣∣T ′µ[U ](x)− U(x)

∣∣∣∣
=

∣∣∣∣T ′µ[U ](x)−
∫
z

dE(z|x)
(
Tπ[V ](z)− V (z)

)
+

∫
z

dE(z|x)
(
Tπ[V ](z)− V (z)

)
− U(x)

∣∣∣∣
≥
∣∣∣∣ ∫
z

dE(z|x)
(
Tπ[V ](z)− V (z)

)∣∣∣∣− ∣∣∣∣T ′µ[U ](x)−
∫
z

dE(z|x)Tπ[V ](z)

∣∣∣∣− ∣∣∣∣U(x)−
∫
z

dE(z|x)V (z)

∣∣∣∣
(a)
≥
∣∣∣∣ ∫
z

dE(z|x)
(
Tπ[V ](z)− V (z)

)∣∣∣∣− ∣∣∣∣∫
z

dE(z|x)

∫
a

dπ(a|z)
(
r(x, a)− r̄(z, a)

)∣∣∣∣
−
∣∣∣∣∫
x̃

(∫
z

dE(z|x)dD(x̃|z)− d1{x = x̃}
)
U(x̃)

∣∣∣∣ , (13)

where (a) is from (12) and the definition of V = U ◦ D. The last term in (13) can be further
upper-bounded as∣∣∣∣∫

x̃

(∫
z

dE(z|x)dD(x̃|z)− d1{x = x̃}
)
U(x̃)

∣∣∣∣ ≤ ∫
x̃

∣∣∣∣∫
z

dE(z|x)D(x̃|z)− 1{x = x̃}
∣∣∣∣ · ‖U‖∞

(a)
≤
∫
z

dE(z|x)

√
1

2
DKL(1{· = x}||D(·|z)) · ‖U‖∞

=

∫
z

dE(z|x)

√
−1

2
logD(x|z) · ‖U‖∞

(b)
≤

√
−1

2

∫
z

dE(z|x) logD(x|z) · Rmax

1− γ . (14)

where (a) follows from the Pinsker’s inequality and (b) follows from the concavity of the
√

(·)
function. The proof is concluded by combining (13) and (14).
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The right-hand-side (RHS) of (11) contains several terms. The first corresponds to the latent Bellman
residual error, the second one corresponds to the latent reward estimation error w.r.t. policy π, and the
third one is a reconstruction loss in the encoder-decoder path, which is commonly found in training
auto-encoders (and is also a regularization term in PCC). Using (9) and Lemma 3, we can further
show that for any U : X → R and at any x ∈ X , with V = U ◦D we may write

|Tµ[U ](x)− U(x)| =
∣∣Tµ[U ](x)− T ′µ[U ](x) + T ′µ[U ](x)− U(x)

∣∣
≥
∣∣T ′µ[U ](x)− U(x)

∣∣− ∣∣Tµ[U ](x)− T ′µ[U ](x)
∣∣

≥
∣∣∣∣∫
z

dE(z|x)(Tπ[V ](z)− V (z))

∣∣∣∣
− γRmax√

2(1− γ)
·
√
DKL

(
Pπ◦E(·|x)||(D ◦ F ◦ π ◦ E)(·|x)

)
−
∣∣∣∣∫
z

dE(z|x)

∫
a

dπ(a|z)(r(x, a)− r̄(z, a))

∣∣∣∣
− Rmax

1− γ

√
−1

2

∫
z

dE(z|x) logD(x|z). (15)

Conversely we now prove a lemma that relates the observation Bellman residual |Tµ[U ](x)− U(x)|
with the latent Bellman residual

∫
z
dE(z|x) |Tπ[V ](z)− V (z)| at an arbitrary observation x ∈ X ,

where the latent policy π and value function V are related to their observation counterparts µ and U
as µ = π ◦ E, i.e., µ(a|x) =

∫
z
dE(z|x)π(a|z), and U = V ◦ E, i.e., U(x) =

∫
z̃
dE(z̃|x)V (z̃).

Lemma 4. For any observation x ∈ X , encoder-transition-decoder tuple (E,F,D), latent policy π
and value function V , the observation and latent Bellman residuals are related to each other as∣∣∣∣∫

z

dE(z|x) ·
(
Tπ[V ](z)− V (z)

)∣∣∣∣ ≥ ∣∣Tµ[U ](x)− U(x)
∣∣ (16)

−
∣∣∣∣∫
z

dE(z|x)

∫
a

dπ(a|z)
(
r(x, a)− r̄(z, a)

)∣∣∣∣
− γRmax√

2(1− γ)

√∫
x′
dPπ◦E(x′|x) ·DKL

(
E(·|x′)||(Fπ ◦ E)(·|x)

)
,

where µ = π ◦ E and U = V ◦ E.

Proof. Using the definition U(x) =
∫
z̃
dE(z̃|x)V (z̃), by adding and subtracting Tµ[U ](x), and the

triangular inequality, we may write∣∣∣∣∫
z

dE(z|x)
(
Tπ[V ](z)− V (z)

)∣∣∣∣ ≥ ∣∣Tµ[U ](x)− U(x)
∣∣− ∣∣∣∣∫

z

dE(z|x)Tπ[V ](z)− Tµ[U ](x)

∣∣∣∣ .
To complete the proof, we now bound the second term on the RHS of the above inequality as∣∣∣∣∫

z

dE(z|x)Tπ[V ](z)− Tµ[U ](x)

∣∣∣∣ ≤ ∣∣∣∣∫
z

dE(z|x)

∫
a

dπ(a|z)
(
r(x, a)− r̄(z, a)

)∣∣∣∣+
γ

∣∣∣∣∫
a

dµ(a|x)

∫
x′
dP (x′|x, a)

∫
z′
dE(z′|x′)V (z′)−

∫
z

dE(z|x)

∫
a

dπ(a|z)
∫
z′
dF (z′|z, a)V (z′)

∣∣∣∣ ,
in which we used the definitions of Tµ[U ](x) and Tπ[V ](z), and the assumption that in this lemma
µ = π ◦ E and U = V ◦ E. We now further upper-bound the second term on the RHS of the above
inequality as∣∣∣∣∫

a

dµ(a|x)

∫
x′
dP (x′|x, a) ·

∫
z′
dE(z′|x′)V (z′)−

∫
z

dE(z|x) ·
∫
a

dπ(a|z) ·
∫
z′
dF (z′|z, a) · V (z′)

∣∣∣∣
≤
∫
z′

∣∣∣∣∫
a

dµ(a|x)

∫
x′
dP (x′|x, a) · E(z′|x′)−

∫
z

dE(z|x) ·
∫
a

dπ(a|z) · F (z′|z, a)

∣∣∣∣ · ‖V ‖∞
(a)
= DTV

(∫
a

dµ(a|x)

∫
x′
dP (x′|x, a) · E(·|x′) ||

∫
z

dE(z|x) ·
∫
a

dπ(a|z) · F (·|z, a)

)
· ‖V ‖∞

(b)
≤ ‖V ‖∞√

2

√∫
x′
dPπ◦E(x′|x) ·DKL

(
E(·|x′) || (Fπ ◦ E)(·|x)

)
,

13
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where (a) follows from the definition of total variation (TV) and (b) is the result of the Pinsker
inequality and joint convexity of DKL(x||y). The proof can be completed by combining the above
results and using the fact that ‖V ‖∞ ≤ Rmax/(1− γ).

Note that since both the observation and latent Bellman operators, Tµ and Tπ, are contraction
mappings, there exists a unique solution Uµ : X → R to the observation fixed-point equation
Tµ[U ](x) = U(x), ∀x ∈ X , and a unique solution Vπ : Z → R to the latent fixed-point equation
Tπ[V ](z) = V (z), ∀z ∈ Z . Together with the result in (15), we can prove the following theorem.

Lemma 5. Assume that the latent Bellman operator Tπ of policy π is defined according to the
encoder-transition-decoder tuple (E,F,D). Let (Vπ ◦E)(x) =

∫
z̃∈Z dE(z̃|x)Vπ(z̃) and µ = π ◦E

be the images of the fixed-point of Tπ and the latent policy π back in the observation space using the
encoder E. Then, for any observation x ∈ X , we have

∣∣Tµ[Vπ ◦ E](x)− Vπ ◦ E(x)
∣∣ ≤ Rmax

1− γ

√
−1

2

∫
z

dE(z|x) logD(x|z)

+ 2

∣∣∣∣∫
z

dE(z|x)

∫
a∈A

dπ(a|z)
(
r(x, a)− r̄(z, a)

)∣∣∣∣
+

γRmax√
2(1− γ)

{√
DKL

(
Pπ◦E(·|x)||(D ◦ F ◦ π ◦ E)(·|x)

)
+

√∫
x′
dPπ◦E(x′|x) ·DKL

(
E(·|x′)||(Fπ ◦ E)(·|x)

)}
.

Proof. Using Eq. 15 with U = Uµ and Vµ = Uµ ◦D, for any x ∈ X we have

|Tµ[Uµ](x)−Uµ(x)|

≥
∣∣∣∣∫
z∈Z

dE(z|x)(Tπ[Vµ](z)− Vµ(z))

∣∣∣∣− γRmax√
2(1− γ)

·

√
DKL

(
Pπ◦E(·|x)||(D ◦ F ◦ π ◦ E)(·|x)

)

−
∣∣∣∣∫
z∈Z

dE(z|x)

∫
a∈A

dπ(a|z)(r(x, a)−r̄(z, a))

∣∣∣∣− Rmax

1− γ

√
−1

2

∫
z∈Z

dE(z|x) logD(x|z).

On the other hand, from the fact that Vπ is the fixed-point solution of Tπ, i.e., Tπ[Vπ](z) = Vπ(z),
we have ∣∣∣∣∫

z

dE(z|x)
(
Tπ[Vµ](z)− Vµ(z)

)∣∣∣∣ ≥ ∣∣∣∣∫
z

dE(z|x)
(
Tπ[Vπ](z)− Vπ(z)

)∣∣∣∣ = 0.

Using Lemma 4 with V = Vπ and U = Vπ ◦ E and the above inequality, we can further show that∣∣∣∣∫
z

dE(z|x)
(
Tπ[Vµ](z)− Vµ(z)

)∣∣∣∣ ≥ ∣∣Tµ[Vπ ◦ E](x)− (Vπ ◦ E)(x)
∣∣− ∣∣∣∣∫

z

dE(z|x)

∫
a

dπ(a|z)
(
r(x, a)− r̄(z, a)

)∣∣∣∣
− γRmax√

2(1− γ)

√∫
x′
dPπ◦E(x′|x) ·DKL

(
E(·|x′)||(Fπ ◦ E)(·|x)

)
.

Together these inequalities imply that

|Tµ[Uµ](x)− Uµ(x)| ≥
∣∣Tµ[Vπ ◦ E](x)− (Vπ ◦ E)(x)

∣∣− 2

∣∣∣∣∫
z

dE(z|x)

∫
a

dπ(a|z)(r(x, a)− r̄(z, a))

∣∣∣∣
− γRmax√

2(1− γ)

√∫
x′
dPπ◦E(x′|x) ·DKL

(
E(·|x′)||(Fπ ◦ E)(·|x)

)
(17)

− γRmax√
2(1− γ)

√
DKL

(
Pπ◦E(·|x)||(D ◦ F ◦ π ◦ E)(·|x)

)
− Rmax

1− γ

√
−1

2

∫
z

dE(z|x) logD(x|z).

Recall that Uµ is a fixed-point of Tµ i.e., Tµ[Uµ](x) = Uµ(x), ∀x ∈ X , we can then complete the
proof by setting the LHS of (17) to zero.
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This theory shows that the observation Bellmen residual error w.r.t. value function Vπ ◦ E, where
Vπ is the optimal latent value function (w.r.t. soft Bellman fixed-point equation), depends on (i)
the prediction error, (ii) the consistency term, (iii) latent reward estimation error, and (iv) the
encoder-decoder reconstruction error. Using analogous derivations as in (10) for the prediction term.
Alternatively, we can further derive the following observation Bellman residual error upper bound
w.r.t. value function Vπ ◦ E that does not depend on the policy.
Corollary 6. Let Vπ ◦E(x) =

∫
z̃∈Z dE(z̃|x)Vπ(z̃), be the observation value function in which Vπ

is the solution of the latent fixed-point equation Tπ[V ](z) = V (z) w.r.t. latent policy π, encoder-
transition-decoder tuple (E,F,D), and parameterized observation-based policy µ = π ◦E. Then
the following statement holds at any x ∈ X :

∣∣Tµ[Vπ ◦ E](x)− Vπ ◦ E(x)
∣∣ ≤ Rmax

1− γ

√
−1

2

∫
z∈Z

dE(z|x) logD(x|z)

+ 2 ·max
a∈A

{∣∣∣∣r(x, a)−
∫
z

dE(z|x)r̄(z, a)

∣∣∣∣+
γRmax√
2(1− γ)

{√
DKL

(
P (·|x, a)||(D ◦ F ◦ E)(·|x, a)

)

+

√∫
x′∈X

dP (x′|x, a) ·DKL (E(·|x′)||F ◦ E(·|x, a))

}}
.

Combining the above results, we have the following main theorem on approximate policy evaluation
that connects the observation value w.r.t. policy π ◦ E and its latent value counterpart.
Theorem 7. The observation value function Uπ◦E w.r.t. policy π ◦ E satisfies the following bound

|Vπ ◦ E(x)− Uπ◦E(x)| ≤ 1

1− γEd
γ
π◦E

[∆(E,F,D, r̄, π, ·)|x0 = x] , ∀x ∈ X .

where the error term is given by

∆(E,F,D, r̄, π, x) =
Rmax

1− γ

√
−1

2

∫
z

dE(z|x) logD(x|z)

+ 2
∣∣ ∫
z

dE(z|x)

∫
a

dπ(a|z)(r(x, a)− r̄(z, a))
∣∣+

γRmax√
2(1− γ)

√
DKL

(
Pπ◦E(·|x) || (D ◦ Fπ ◦ E)(·|x)

)
+

γRmax√
2(1− γ)

√∫
x′∈X

dPπ◦E(x′|x) ·DKL (E(·|x′)||(Fπ ◦ E)(·|x)).

Proof. To prove the right side of the approximate policy evaluation inequality, recall from Lemma 5
with µ = π ◦ E and LCE-reward models (E,F,D, r̄) that

Tπ◦E [Vπ ◦ E](x) ≤ Vπ ◦ E(x) + ∆(E,F,D, r̄, π, x), ∀x ∈ X .

Applying the Bellman operator Tπ◦E on both sides, we get

T 2
π◦E [Vπ ◦ E](x) ≤ Tπ◦E [Vπ ◦ E](x) + γ

∫
a

(π ◦ E)(a|x)

∫
x′
dP (x′|x, a)∆(E,F,D, r̄, π, x′),

= Tπ◦E [Vπ ◦ E](x) + γ EPπ◦E [∆(E,F,D, r̄, π, ·)|x], ∀x ∈ X .

Proceeding similarly, with P `−1
π◦E(x′|x) = P(x`−1 = x′|x0 = x;π ◦ E) it follows that

T `π◦E [Vπ ◦ E](x) ≤ T `−1
π◦E [Vπ ◦ E](x) + γ`−1E

P `−1
π◦E

[∆(E,F,D, r̄, π, ·)|x], ∀x ∈ X .

Therefore, for every k > 0

T kπ◦E [Vπ ◦ E](x)− Vπ ◦ E(x) =

k∑
`=1

(
T `π◦E [Vπ ◦ E](x)− T `−1

π◦E [Vπ ◦ E](x)
)

≤
k∑
`=1

γ`−1E
P `−1
π◦E

[∆(E,F,D, r̄, π, ·)|x].

Taking k →∞, we then obtain
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Uπ◦E(x) = T∞π◦E [Vπ ◦ E](x) ≤ Vπ ◦ E(x) +
1

1− γEd
γ
π◦E

[∆(E,F,D, r̄, π, ·)|x0 = x] ,

where dγπ◦E(x′|x0) = (1−γ)·
∑∞
`=0 γ

`P(x` = x′|x0, π◦E) is the γ-stationary distribution of policy
π ◦ E starting at state x0. On the other hand, the left-hand-side of the policy evaluation inequality
follows analogous arguments. This completes the proof of the approximate policy evaluation.

A.2 APPROXIMATE POLICY ITERATION WITH CARL

Given the LCE model (E,F,D) and policy µ, recall from Algorithm 1 the policy iteration procedure:

1. Compute the distilled latent policy by π ← arg minµDKL(π ◦ E(·|x)||µ(·|x))

2. Compute the π-induced latent value function Vπ(z) = limn→∞ Tnπ [V ](z), ∀z w.r.t.
models (F, r̄) and the state-action latent value function Qπ(z, a) := r̄(z, a) +
γ
∫
z′∈X dF (z′|z, a)Vπ(z′)

3. Compute the updated latent policy π+(·|z) ∈ arg maxp∈∆

∫
a∈A dp(a) ·Qπ(z, a), and the

updated observation policy µ+(·|x) = π+ ◦ E(·|x)

4. Update the LCE model (E,F,D) and the latent reward model r̄ by minimizing the loss
∆(E,F,D, r̄, π+)

5. Repeat step 1 to step 4

Using the intermediate technical results in policy evaluation (Theorem 7), we can now prove the
approximate policy improvement result in Theorem 1 for this procedure, which shows the relationship
between the value functions of two consecutive polices generated by LSLPI in X .

Proof of Theorem 1. To start with, using the policy evaluation property from Thoerem 7, we have

Uπ◦E(x) ≤ Vπ ◦ E(x) +
1

1− γEd
γ
π◦E

[∆(E,F,D, r̄, π, ·)|x0 = x] ,

for all x ∈ X , where the error term ∆ for a policy π is given by

∆(E,F,D, r̄, π, x) =
Rmax

1− γ

(I)=Led(E,D,x)︷ ︸︸ ︷√
−1

2

∫
z

dE(z|x) logD(x|z) + 2

(II)=Lr(E,̄r,π,x)︷ ︸︸ ︷∣∣rπ◦E(x)−
∫
z

dE(z|x)r̄π(z)
∣∣ (18)

+
γRmax√
2(1− γ)

(√
DKL

(
Pπ◦E(·|x) || (D ◦ Fπ ◦ E)(·|x)

)︸ ︷︷ ︸
(III)=Lp(E,F,D,π,x)

+
√
DKL

(
(E ◦ Pπ◦E)(·|x) || (Fπ ◦ E)(·|x)

)︸ ︷︷ ︸
(IV)

)
.

Applying Bellman operator Tπ◦E on both sides and noticing that Tπ◦E [U ](x) ≤ T [U ](x) uniformly
for all x ∈ X and for any observation value function U , we can then show that for any x ∈ X ,

Uπ◦E(x) ≤ Vπ ◦ E(x) +
1

1− γ · Ed
γ
π◦E

[∆(E,F,D, r̄, π, ·)|x0 = x]

=

∫
z∈Z

dE(z|x)Tπ[Vπ](z) +
1

1− γ · Ed
γ
π◦E

[∆(E,F,D, r̄, π, ·)|x0 = x]

≤
∫
z∈Z

dE(z|x)T [Vπ](z) +
1

1− γ · Ed
γ
π◦E

[∆(E,F,D, r̄, π, ·)|x0 = x]

=

∫
z∈Z

dE(z|x)Tπ+ [Vπ](z) +
1

1− γ · Ed
γ
π◦E

[∆(E,F,D, r̄, π, ·)|x0 = x]

≤
∫
z∈Z

dE(z|x)Tπ+ [Vπ+ ](z) +
1

1− γ · Ed
γ
π◦E

[∆(E,F,D, r̄, π, ·)|x0 = x]

=

∫
z∈Z

dE(z|x)Vπ+(z) +
1

1− γ · Ed
γ
π◦E

[∆(E,F,D, r̄, π, ·)|x0 = x]

≤Uπ+◦E(x)︸ ︷︷ ︸
Uµ+ (x)

+
Edγ

π◦E
[∆(E,F,D, r̄, π, ·)|x0 = x] + Edγ

π+◦E
[∆(E,F,D, r̄, π+, ·)|x0 = x]

1− γ .

(19)
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The first inequality is based on Theorem 7. The first equality is based on the property that Vπ is
a unique solution to fixed-point equation Tπ[V ](z) = V (z). The second inequality is based on the
definition of

T [V ](z) = max
p∈∆

∫
a

dp(a)

{
r̄(z, a) + γ

∫
z′∈X

dF (z′|z, a)Vπ(z′)

}
≥
∫
a

dπ(a|z)
{
r̄(z, a) + γ

∫
z′∈X

dF (z′|z, a)Vπ(z′)

}
.

The second equality is based on the definition of π+. The third inequality is based on the policy
improvement property in latent policy iteration, i.e.,

T [Vπ] ≥ Tπ[Vπ] = Vπ =⇒ Vπ+ = lim
k→∞

T kπ+
[Vπ] = lim

k→∞
T k[Vπ] ≥ Vπ,

and the monotonicity property of latent Bellman operator. The third equality is based on the fact that
Vπ+

is a unique solution to fixed-point equation Tπ+
[V ](z) = V (z). The fourth inequality is again

based on Lemma 5 (when π = π+).

Furthermore, considering the error from the distillation step, using Lemma 3 of Achiam et al. (2017)
and Pinsker’s inequality, one can show that

Uµ(x) ≤ Uπ◦E(x) +

√
2γRmax

(1− γ)
· Edγ

π◦E

[√
DKL(π ◦ E(·′|·)||µ(·′|·))|x0 = x

]
. (20)

Together this completes the proof of the approximate policy improvement result in Theorem 1.

B OFFLINE CARL

Given the LCE model (E,F,D) and policy µ, consider the following offline latent policy iteration
procedure that optimizes the policy in form of µ ◦ E:

1. Compute the distilled latent policy by π ← arg minµDKL(π ◦ E(·|x)||µ(·|x))

2. Compute the updated latent policy π+(·|z) ∈ arg maxp∈∆

∫
a∈A dp(a) ·Qπ(z, a), and the

updated observation policy µ+(·|x) = π+ ◦ E(·|x)

3. Repeat step 1 to step 2

We are now in position to prove the approximate policy improvement result for offline CARL in
Corollary 2, which marginalize out the policy from the (online) CARL’s loss function.

Proof of Corollary 2. Compared with the approximate policy improvement result of online CARL in
Theorem 1, in offline CARL when the LCE model (E,F,D) and the latent reward model r̄ do not
change online, there is no need for the distillation step. Following analogous arguments as in Corollary
6, to eliminate the dependencies on policies below we replace the PI bound ∆(E,F,D, r̄, π, x) in
Theorem 1 with the more conservative bound, which considers the worst-case error term over actions,
i.e., maxa∈A∆(E,F,D, r̄, a, x).

Denote by Tµ∗ [U ](x) the observation Bellman operator w.r.t. optimal latent policy π∗. Recall that∫
z∈Z dE(z|x)Tπ+ [Vπ+ ](z) = Vπ+ ◦ E(x). Using the results in Theorem 7, we have the following

chain on inequalities

Uµ+(x) ≥
∫
z∈Z

dE(z|x)Tπ+ [Vπ+ ](z)− 1

1− γ · Ed
γ
π+◦E

[
max
a∈A

∆(E,F,D, r̄, a, ·)|x0 = x

]
≥
∫
z∈Z

dE(z|x)Tπ+ [Vπ](z)− 1

1− γ · Ed
γ
π+◦E

[
max
a∈A

∆(E,F,D, r̄, a, ·)|x0 = x

]
=

∫
z∈Z

dE(z|x)T [Vπ](z)− 1

1− γ · Ed
γ
π+◦E

[
max
a∈A

∆(E,F,D, r̄, a, ·)|x0 = x

]
≥
∫
z∈Z

dE(z|x)Tπ∗ [Vπ](x)− 1

1− γ · Ed
γ
π+◦E

[
max
a∈A

∆(E,F,D, r̄, a, ·)|x0 = x

]
≥Tµ∗ [Vµ ◦ E](x)− 1 + (1− γ)

1− γ · max
x∈X ,a∈A

∆(E,F,D, r̄, a, x),

≥Tµ∗ [Uµ](z)− 1 + (1− γ) + γ

1− γ · max
x∈X ,a∈A

∆(E,F,D, r̄, a, x),
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where the first three inequality and equality follows similar argument as in the proof of Theorem
1 (but instead of Lemma 5 we use the results from Corollary 6), the fourth inequality follows from
direct algebraic manipulations, and the last inequality follows from Theorem 7 when applied to Uµ,
i.e.,

Uµ(x) ≤Vπ ◦ E(x) +
1

1− γ · Ed
γ
π◦E

[
max
a∈A

∆(E,F,D, r̄, a, ·)|x0 = x

]
≤Vπ ◦ E(x) +

1

1− γ · max
x∈X ,a∈A

∆(E,F,D, r̄, a, x)

and from the contraction property of Tµ∗ , i.e.,

Tµ∗ [Uµ](x) ≤ Tµ∗ [Vπ ◦ E](x) +
γ

1− γ · max
x∈X ,a∈A

∆(E,F,D, r̄, a, x).

To prove the inequality in equation 7, i.e., the final result of Corollary 2, notice that with U∗ equal to
the fixed-point solution of Bellman operator Tµ∗ , we have the following property:

−γ‖Uµ − U∗‖∞ ≤ Tµ∗ [Uµ]− Tµ∗ [U∗] = Tπ∗ [Uµ]− U∗ ≤ γ‖Uµ − U∗‖∞.

Notice that by definition Uµ+
(x) ≤ U∗(x), we then have the chain of inequalities

−‖Uµ+ − U
∗‖∞ = Uµ+(x)− U∗(x) ≥Tµ∗ [Uµ](x)− U∗(x)− 2

1− γ max
x∈X ,a∈A

∆(E,F,D, r̄, a, x)

≥− γ‖Uµ − U∗‖∞ −
2

1− γ · max
x∈X ,a∈A

∆(E,F,D, r̄, a, x).

In other words, we have the following inequality:

‖Uµ+(x)− U∗(x)‖∞ ≤ γ‖Uµ − U∗‖∞ +
2

1− γ max
x∈X ,a∈A

∆(E,F,D, r̄, a, x).

Thus the proof is completed by taking i→∞ and noticing that

lim
i→∞

‖Uµ+(x)− U∗(x)‖∞ = lim
i→∞

‖Uµ+(x)− U∗(x)‖∞.

C VALUE-GUIDED CARL (V-CARL)

Based on variational model-based policy optimization (Chow et al., 2020), the "optimal" dynamics
for model-based RL has the following closed-form solution:

P ∗(x′|x, a) =
P (x′|x, a) · exp

(
τ · Ũµ(x′)

)
exp

(
τ · (W̃µ(x, a)− r(x, a))/γ

) = P (x′|x, a)·exp

(
τ · r(x, a) + γŨµ(x′)− W̃µ(x, a)

γ

)
,

(21)
in which Ũµ(x) is the optimistic observation value function at policy µ, i.e.,

Ũµ(x) :=
1

τ
logE

[
exp

(
τ ·

∞∑
t=0

γtrµ(xt)

)
| Pµ, x0 = x

]
,

which is also a unique solution that satisfies the fixed-point property:

Ũµ(x) =

∫
a

dµ(a|x)

[
r(x, a) + γ · 1

τ
· logEx′∼P (·|x,a)

[
exp

(
τ · Ũ(x′)

)]]
,

and W̃µ(x) is the optimistic observation state-action value function at policy µ, i.e.,

W̃µ(x, a) := r(x, a) + γ · 1

τ
· logEx′∼P (·|x,a)

[
exp

(
τ · Uµ(x′)

)]
.

This modified dynamics model P ∗ is an exponential twisting of the original transition dynamics P
with weight

w(x, a, x′) = τ · (r(x, a) + γŨµ(x′)− W̃µ(x, a))/γ, (22)

which corresponds to the standard discounted TD-error of the optimistic value functions.
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To incorporate this model-learning paradigm in V-CARL, one replaces the transition model P in the
prediction loss with P ∗. Assuming that µ ≈ π ◦ E (which is enforced by the distillation loss term in
CARL), the prediction loss can be approximated as

Lp(E,F,D, π, x) ≈ DKL
(
Pµ(·|x) || (D ◦ Fπ ◦ E)(·|x)

)
=

∫
x′
dPµ(x′|x) log

(D ◦ Fπ ◦ E)(x′|x)

Pµ(x′|x)
.

Since the term logPµ(x′|x) is independent to the LCE model, minimizing Lp is equivalently to
maximizing the expected log-likelihood:∫

x′
dPµ(x′|x) · log(D ◦ Fπ ◦ E)(x′|x).

Replacing the transition dynamics model P with P ∗, this objective function can be re-written as∫
x′
dP ∗µ (x′|x) · log(D ◦ Fπ ◦ E)(x′|x) =

∫
x′
dP ∗µ (x′|x) · log(D ◦ Fπ ◦ E)(x′|x)

=

∫
a

dµ(a|x)

∫
x′
dP (x′|x, a) · exp(w(x, a, x′)) · log(D ◦ Fπ ◦ E)(x′|x).

(23)

Maximizing this function corresponds to a maximum weighted log-likelihood model-learning
approach (w.r.t. P ) for which the weight is the exponential TD w(x, a, x′)

Below we propose ways to efficiently compute the exponential TD weight w(x, a, x′) = τ · (r(x, a)+

γŨµ(x′) − W̃µ(x, a))/γ. For simplicity we consider the case when τ > 0 is small, for which
Ruszczyński & Shapiro (2006) shows that ρτ (U(·)|x, a) ≈ E[U |x, a]. In other cases when this
approximation does not hold, one needs to directly learn the optimistic value function Ũµ(x) and
state-action value functions W̃µ(x, a), for which the details can be found in Borkar (2002). Under this
approximation, we can approximate the optimistic value functions with their standard counterparts,
i.e.,

Ũµ(x) ≈ Uµ(x), W̃µ(x, a) ≈Wµ(x, a) := r(x, a) +

∫
x′
dP (x′|x, a)Uµ(x′), (x, a) ∈ X ×A.

Instead of computing the value functions Uµ and Wµ in the observation space, we can approximate
them with their low-dimensional latent-space counterparts. In particular, Lemma 5 implies that

|Vπ ◦ E(x)− Uµ(x)| ≤ γ

1− γ∆(E,F,D, r̄, π, x) +
Rmax

1− γ ·DKL(π ◦ E(·|x)||µ(·|x)), ∀x ∈ X .

Since we are minimizing the terms on the right side of the bound for the LCE model, assuming these
terms are small, we have Uµ(x) ≈ Vπ ◦ E(x). Following analogous derivations we also have the
following error bound for the state-action value function:

|Qπ ◦ E(x, a)−Wµ(x, a)|

≤ γ

1− γ∆(E,F,D, r̄, x, a) +
γRmax

1− γ ·DKL(π ◦ E(·|x)||µ(·|x)), ∀x ∈ X , a ∈ A.

where the state-action error term is given by

∆(E,F,D, r̄, x, a) :=
Rmax

1− γ

√
−1

2

∫
z

dE(z|x) logD(x|z)

+ 2
∣∣r(x, a)− r̄(z, a)

∣∣+
γRmax√
2(1− γ)

√
DKL

(
P (·|x, a) || (D ◦ F ◦ E)(·|x, a)

)
+

γRmax√
2(1− γ)

√∫
x′∈X

dP (x′|x, a) ·DKL (E(·|x′)||(F ◦ E)(·|x, a)).

Similarly, the state-action value function can be approximated by Wµ(x, a) ≈ Qπ ◦ E(x, a).

Finally, recall that latent reward function is learned to minimize the following loss:∣∣ ∫
z,a
dE(z|x)dπ(a|z)(r(x, a)− r̄(z, a))

∣∣, such that the reward model satisfies r(x, a) ≈ r̄ ◦E(x, a).
Together, the exponential TD weight can be approximated by the latent reward, latent value function,
and latent state-action value function as follows:

w(x, a, x′) ≈ ŵ(x, a, x′) :=

∫
z,z′

dE(z|x) · dE(z′|x′) · (r̄(z, a)−Qπ(z, a)) + γVπ(z′).
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D CARL ALGORITHMS

Below in Algorithm 2 we present the practical implementation of the CARL algorithm with notation
for all of its variants (offline CARL, online CARL, Value-Guided CARL).

Algorithm 2 Control Aware Representation Learning (CARL)

1: Inputs: A dataset Dreal tuples (x, a, x′, xg) from the environment, Env. A latent controllable
embedding (LCE) network M consisting of an encoder E : X → Z , transition dynamics
F : Z × A → Z , decoder D : Z → X , and backwards encoder B : X × Z × A → Z; plus
networks for control: latent critic networks Vφ1

, Vφ2
: Z → R, Qθ1 , Qθ2 : Z × A → R, and

latent actor network πψ : Z → A
2: #For T = 0, the algorithm becomes Offline CARL
3: for i = 0, . . . , T do
4: for j = 1, . . . , num_pcc_epochs do
5: #Representation learning.
6: TrainM(i) using dataset Dreal model
7: For value-guided CARL, the prediction and consistency loss functions requires the ex-

ponential twisting weight exp( τγ · ŵ(x, a, x′)), where ŵ(x, a, x′) =
∫
z,z′

E(i−1)(z|x) ·
E(i−1)(z′|x′) · (−||zg − z′||2 −Qφ̄(z, a)) + γVφ̄(z′))

8: end for
9: Initialize a soft actor critic (SAC) policy π(i)

10: if Do policy distillation and i ≥ 1 then
11: #Corresponds to the policy distillation loss Lp
12: for Each policy distillation epoch do
13: π

(i)
ψ ← π

(i)
ψ −∇ψEx∼D

[
DKL

(
π

(i)
ψ

(
E(i)(·|x)

)
||π(i−1)

ψ

(
E(i−1)(·|x)

))]
14: end for
15: end if
16: Initialize a latent space buffer Blatent
17: #Learning a latent space policy
18: for Each soft actor critic step do
19: Sample real dataset (x, a, xg) ∼ D(i)

real
20: Generate necessary latent space variables:

z ∼ E(·|x), z′ ∼ F (·|z, u), zg ∼ E(·|xg), r = −||zg − z′||2
21: Add latent batch to latent buffer Blatent ← Blatent ∪ (z, a, z′, r, zg)
22: Sample latent buffer (z, a, z′, r, zg) ∼ Blatent
23: #Train the policy π(i) with (z, u, z′, r, zg) with the SAC algorithm
24: θi ← θi − κQ∇θiJQ(θi) for i ∈ {1, 2} #Update the Q-function weights
25: φi ← φi − κV∇φiJV (φi) for i ∈ {1, 2} #Update the V-function weights
26: ψ ← ψ − κπ∇ψJψ(ψ) #Update the policy weights
27: θ̄i ← νθi + (1− ν)θ̄i for i ∈ {1, 2} #Update the Q-target critic networks weights
28: φ̄i ← νφi + (1− ν)φ̄i for i ∈ {1, 2} #Update the V-target critic networks weights
29: end for
30: #Sample the environment for new real data
31: for Each Interaction with Environment do
32: Sample Actions a ∼ π(i)(E(·|x))
33: Interact with the environment x′ ← Env(x, a)
34: Update real data dataset Dreal ← Dreal ∪ (x, a, x′, xg)
35: Update current state x← x′

36: end for
37: end for

Soft Actor Critic (SAC) Updates The policy parameters ψ are optimized to update the latent space
policy towards the exponential of the soft Q-function,

Jπ(ψ) = E
zt∼D

[
E

at∼πψ
[αlog(πψ(at|zt)−Qθ(zt, at)]

]
(24)

20



Published as a conference paper at ICLR 2021

Our updates to the Q network minimize the following loss function:

JQ(θ) = E(zt,at)∼D

[
1

2

(
Qθ(zt, at)− Q̂(zt, at)

)2
]

(25)

where:

Q̂θ(zt, at) = r(zt, at) +

k−1∑
i=0

γi+1r(zt+i+1, at+i+1)|at ∼ πψ(·|zt), zt+1 ∼ F (·|zt, at) (26)

here, F is the learned latent space transition model and r(zt, at) = ||zgoal − zt+1||22 where, zt+1 ∼
F (·|zt, at) and zgoal ∼ E(·|xgoal) and xgoal is the observation of the environment; additionally, k is
a tunable hyperparameter of the number of rollouts in the latent space should we rollout our model to
sufficiently approximate the Q-value. As in Haarnoja et al. (2018) we utilize two Q-functions and
take the minimum of the Q-functions to generate the value in the actor loss function. We note that
we don’t have value network updates as we tried adding value networks but were unable to get good
results.

E EXPERIMENTAL SETUP

In this section, we provide a description of the domains and implementation details used in our
experiments. For all the experiments, when using iLQR we define the cost function as c(z, a) =
(z − zg)>Q(z − zg) + a>Ra, where z and zg are latent states of the current and goal observation,
and Q = κ · Inz with κ = 50 and R = Ina are the penalty weights of observation and action. This
reward configuration follows exactly from Levine et al. (2020).

E.1 DOMAINS DESCRIPTION

Planar System In this task the main goal is to navigate an agent in a surrounded area on a 2D plane
(Breivik & Fossen, 2005), whose goal is to navigate from a corner to the opposite one, while avoiding
the six obstacles in this area. The system is observed through a set of 40 × 40 pixel images taken
from the top view, which specifies the agent’s location in the area. Actions are two-dimensional and
specify the x − y direction of the agent’s movement, and given these actions the next position of
the agent is generated by a deterministic underlying (unobservable) state evolution function. Start
State: top-left corner. Goal State: one of three corners (excluding top-left corner). Agent’s Objective:
agent is within Euclidean distance of 5 from the goal state. For the biased-sampling variant of
this experiment, we uniformly sample a proportion, p, of the total samples within a 30× 30 pixel
region, which doesn’t include any of the goal states, and the other 1− p proportion of the samples
are sampled uniformly from the entire underlying state space.

Inverted Pendulum – SwingUp This is the classic problem of controlling an inverted pendu-
lum (Furuta et al., 1991) from 48 × 48 pixel images. The goal of this task is to swing up an
under-actuated pendulum from the downward resting position (pendulum hanging down) to the
top position and to balance it. The underlying state st of the system has two dimensions: angle
and angular velocity, which is unobservable. The control (action) is 1-dimensional, which is the
torque applied to the joint of the pendulum. For all PCC based algorithms, we opt to consider each
observation xt as two images generated from consecutive time-frames (the current time and the
previous time; this was also done in the original PCC paper (Levine et al., 2020). This is because
each image only shows the position of the pendulum and does not contain any information about the
velocity. Start State: Pole is resting down, Agent’s Objective: pole’s angle is within ±π/6 from an
upright position. For the biased-sampling variant of this experiment, we sample a proportion, p, of
the total samples from when the pendulum is in it’s closer to its resting position [−π,−2.0] ∪ [2, π]
and the other 1− p samples when the pendulum is within ±0.5 from an upright position.

CartPole This is the visual version of the classic task of controlling a cart-pole system (Geva &
Sitte, 1993). The goal in this task is to balance a pole on a moving cart, while the cart avoids hitting
the left and right boundaries. The control (action) is 1-dimensional, which is the force applied to the
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cart. The underlying state of the system st is 4-dimensional, which indicates the angle and angular
velocity of the pole, as well as the position and velocity of the cart. Similar to the inverted pendulum,
in order to maintain the Markovian property the observation xt is a stack of two 80× 80 pixel images
generated from consecutive time-frames. Start State: Pole is randomly sampled in ±π/6. Agent’s
Objective: pole’s angle is within ±π/10 from an upright position. For the biased-sampling variant
of this experiment, we sample a proportion, p, of the total samples from when the pole’s angle is
sampled from [−π/6,−π/10] ∪ [π/10, π/6] and the other 1 − p samples are sampled as before
uniformly from the given state space.

3-link Manipulator — SwingUp & Balance The goal in this task is to move a 3-link manipulator
from the initial position (which is the downward resting position) to a final position (which is the top
position) and balance it. In the 1-link case, this experiment is reduced to inverted pendulum. In the
2-link case the setup is similar to that of arcobot (Spong, 1995), except that we have torques applied
to all intermediate joints, and in the 3-link case the setup is similar to that of the 3-link planar robot
arm domain that was used in the E2C paper, except that the robotic arms are modeled by simple
rectangular rods (instead of real images of robot arms), and our task success criterion requires both
swing-up (manipulate to final position) and balance.10 The underlying (unobservable) state st of
the system is 2N -dimensional, which indicates the relative angle and angular velocity at each link,
and the actions are N -dimensional, representing the force applied to each joint of the arm. The
state evolution is modeled by the standard Euler-Lagrange equations (Spong, 1995; Lai et al., 2015).
Similar to the inverted pendulum and Cartpole, in order to maintain the Markovian property, the
observation state xt is a stack of two 80× 80 pixel images of the N -link manipulator generated from
consecutive time-frames. In the experiments we will evaluate the models based on the case of N = 2
(2-link manipulator) and N = 3 (3-link manipulator). Start State: 1st pole with angle π, 2nd pole with
angle 2π/3, and 3rd pole with angle π/3, where angle π is a resting position. Agent’s Objective: the
sum of all poles’ angles is within ±π/6 from an upright position. For the biased-sampling variant
of this experiment, we sample a proportion, p of the total samples of when the 1st pole is within
±π/2, the 2nd pole is within angle ±π/3, and the 3rd pole is within angle ±π/6 of the upright
position and the other 1− p samples are sampled as before uniformly from the given state space.

E.2 DATA GENERATION PROCEDURE

For all algorithms that use the PCC framework for representation learning, we always start by
sampling triplets of the form (xt, at, xt+1), which is done by (1) uniformly randomly sampling an
underlying state st from the environment and creating the corresponding observation xt, (2) uniformly
randomly sampling a valid action at, and (3) obtaining the next state st+1 through the environment’s
true dynamics and creating the corresponding observation xt+1.

When interacting with the true underlying MDP, sampling the environment for more data for the
iterative online variant of our algorithm, at iteration i of our algorithm, we are following our
learned policy π(i). We start with an initial observation x0 and generate our initial action a0, a0 ∼
π

(i)
ψ (E(·|x0)) and continue following our learned policy π(i) to get our action aj , aj ∼ π(i)

ψ (E(·|xj)).
We continue this process until we have reached the end of the episode or the pre-defined number of
samples we draw from the environment.

In SOLAR and Dreamer each training sample is an episode {x1, a1, x2, · · · , xT , aT , xT+1}, where
T is the control horizon. We uniformly sample T actions from the action space, apply the dynamics
T times, and generate the T corresponding observations.

E.3 IMPLEMENTATION OF THE ALGORITHMS

In the following we describe architectures and hyper-parameters that were used for training the
different algorithms.

E.3.1 TRAINING HYPER-PARAMETERS AND REGULIZERS

SOLAR training specifics, we used their default setting:

• Batch size of 2.
10Unfortunately due to copyright issues, we cannot test our algorithms on the original 3-link planar robot arm

domain.
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• ADAM (Kingma & Ba, 2014) with β1 = 0.9, β2 = 0.999, and ε = 10−8. We also use a
learning rate αmodel = 2·10−5×horizon for the learning rateMNIW prior and α = 10−3

for other parameters.

• βstart, βend, βrate = (10−4, 10.0, 5 · 10−5)

• Local inference and control:

– Data strength: 50
– KL step: 2.0
– Number of Iterations: 10

PCC training specifics, we use their reported optimal hyperparameters:

• Batch size of 128.

• ADAM with α = 5 · 10−4, β1 = 0.9, β2 = 0.999, and ε = 10−8.

• L2 regularization with a coefficient of 10−3.

• (λp, λc, λcur) = (1, 7, 1), and the additive Gaussian noise in the curvature loss is N (0, σ2),
where σ2 = 0.01.

• Additional VAE (Kingma & Welling, 2013) loss term `VAE = −Eq(z|x)[log p(x|z)] +
DKL(q(z|x)||p(z)) with a very small coefficient of 0.01, where p(z) = N (0, 1).

• Additional deterministic reconstruction loss with coefficient 0.3: given the current observa-
tion x, we take the means of the encoder output and the dynamics model output, and decode
to get the reconstruction of the next observation.

CARL training specifics:

• Batch size of 128.

• ADAM with α = 5 · 10−4, β1 = 0.9, β2 = 0.999, and ε = 10−8.

• L2 regularization with a coefficient of 10−3.

• The additive Gaussian noise in the curvature loss is N (0, σ2), where σ2 = 0.01.

• As in Levine et al. (2020), we use the deterministic reconstruction loss with coefficient 0.3.

E.3.2 NETWORK ARCHITECTURES

We next present the specific architecture choices for each domain. For fair comparison, The numbers
of layers and neurons of each component were shared across all algorithms. ReLU non-linearities
were used between each two layers.

Encoder: composed of a backbone (either a MLP or a CNN, depending on the domain) and an
additional fully-connected layer that outputs mean variance vectors that induce a diagonal Gaussian
distribution (for PCC, SOLAR, and all CARL variants).

Decoder: composed of a backbone (either a MLP or a CNN, depending on the domain) and an
additional fully-connected layer that outputs logits that induce a Bernoulli distribution (for PCC,
SOLAR, and all CARL variants)

Dynamical model: the path that leads from {zt, at} to ẑt+1. Composed of a MLP backbone and
an additional fully-connected layer that outputs mean and variance vectors that induce a diagonal
Gaussian distribution (for PCC, SOLAR, and all CARL variants).

Backwards dynamical model: the path that leads from {ẑt+1, at, xt} to zt. Each of these inputs
goes to fully-connected layer of {Nz, Nu, Nx} neurons respectively. These outputs are then con-
catenated and passed through another layer of Njoint neurons, and finally with an additionally
fully-connected layer we output the mean and variance vectors that induce a diagonal Gaussian
distribution.

SAC Architecture: For all of our environments with all CARL algorithms, we utilized the same
SAC architecture as seen in Table 2:
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Hyper Parameters for SAC Value(s)
Discount Factor 0.99
Critic Network Architecture MLP with 2 hidden layers of size 256
Actor Network Architecture MLP with 2 hidden layers of size 256
Exploration policy N (0, σ = 1)
Exploration noise (σ) decay 0.999
Exploration noise (σ) minimum 0.025
Temperature 0.99995
Soft target update rate (τ ) 0.005
Replay memory size 106

Minibatch size 128
Number of Rollouts in the Latent space, k in (26) 5
Critic learning rate 0.001
Actor learning rate 0.0005
Neural network optimizer Adam

Table 2: Hyper-parameters for the SAC controller.

Planar system

• Input: 40× 40 images.
• Actions space: 2-dimensional
• Latent space: 2-dimensional
• Encoder: 3 Layers: 300 units - 300 units - 4 units (2 for mean and 2 for variance)
• Decoder: 3 Layers: 300 units - 300 units - 1600 units (logits)
• Dynamics: 3 Layers: 20 units - 20 units - 4 units
• Backwards dynamics: Nz = 5, Na = 5, Nx = 100 - Njoint = 100 - 4 units
• Number of control actions: or the planning horizon T = 40

• Offline and Online CARL hyperparameters: λed = 0.01, λp = 1, λc = 7, λcur = 1

• Value-Guided CARL hyperparameters: λed = 0.01, λp = 2, λc = 11, λcur = 1, τ =
1/30.0

• Proportion of biased samples: p = 0.5

• Number of samples from the environment per iteration i in Algorithm 2: 128
• Initial standard deviation for collecting data (SOLAR): 1.5 for both global and local

training.

Inverted Pendulum – SwingUp

• Input: Two 48× 48 images.
• Actions space: 1-dimensional
• Latent space: 3-dimensional
• Encoder: 3 Layers: 500 units - 500 units - 6 units (3 for mean and 3 for variance)
• Decoder: 3 Layers: 500 units - 500 units - 4608 units (logits)
• Dynamics: 3 Layers: 30 units - 30 units - 6 units
• Backwards dynamics: Nz = 10, Na = 10, Nx = 200 - Njoint = 200 - 6 units
• Number of control actions: or the planning horizon T = 400

• Offline and Online CARL environment hyperparameters: λed = 0.01, λp = 1, λc =
11, λcur = 1

• Value-Guided CARL environment hyperparameters: λed = 0.01, λp = 1, λc =
7, λcur = 1, τ = 1/60.0

• Proportion of biased samples: p = 0.95

• Number of samples from the environment per iteration i in Algorithm 2: 128
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• Initial standard deviation for collecting data (SOLAR): 0.5 for both global and local
training.

Cart-pole – Balancing

• Input: Two 80× 80 images.
• Actions space: 1-dimensional
• Latent space: 8-dimensional
• Encoder: 6 Layers: Convolutional layer: 32 × 5 × 5; stride (1, 1) - Convolutional layer:

32 × 5 × 5; stride (2, 2) - Convolutional layer: 32 × 5 × 5; stride (2, 2) - Convolutional
layer: 10× 5× 5; stride (2, 2) - 200 units - 16 units (8 for mean and 8 for variance)

• Decoder: 6 Layers: 200 units - 1000 units - 100 units - Convolutional layer: 32 × 5 × 5;
stride (1, 1) - Upsampling (2, 2) - convolutional layer: 32×5×5; stride (1, 1) - Upsampling
(2, 2) - Convolutional layer: 32× 5× 5; stride (1, 1) - Upsampling (2, 2) - Convolutional
layer: 2× 5× 5; stride (1, 1)

• Dynamics: 3 Layers: 40 units - 40 units - 16 units
• Backwards dynamics: Nz = 10, Na = 10, Nx = 300 - Njoint = 300 - 16 units
• Number of control actions: or the planning horizon T = 200

• Offline and Online CARL environment hyperparameters: λed = 0.01, λp = 1, λc =
7, λcur = 1

• Value-Guided CARL environment hyperparameters: λed = 0.01, λp = 1, λc =
7, λcur = 1, τ = 1/40.0

• Proportion of biased samples: p = 0.8

• Number of samples from the environment per iteration i in Algorithm 2: 256
• Initial standard deviation for collecting data (SOLAR): 10 for global and 5 for local

training.

3-link Manipulator — Swing Up & Balance

• Input: Two 80× 80 images.
• Actions space: 3-dimensional
• Latent space: 8-dimensional
• Encoder: 6 Layers: Convolutional layer: 32 × 5 × 5; stride (1, 1) - Convolutional layer:

32 × 5 × 5; stride (2, 2) - Convolutional layer: 32 × 5 × 5; stride (2, 2) - Convolutional
layer: 10× 5× 5; stride (2, 2) - 500 units - 16 units (8 for mean and 8 for variance)

• Decoder: 6 Layers: 200 units - 1000 units - 100 units - Convolutional layer: 32 × 5 × 5;
stride (1, 1) - Upsampling (2, 2) - convolutional layer: 32×5×5; stride (1, 1) - Upsampling
(2, 2) - Convolutional layer: 32× 5× 5; stride (1, 1) - Upsampling (2, 2) - Convolutional
layer: 2× 5× 5; stride (1, 1)

• Dynamics: 3 Layers: 40 units - 40 units - 16 units
• Backwards dynamics: Nz = 10, Na = 10, Nx = 400 - Njoint = 400 - 16 units
• Number of control actions: or the planning horizon T = 200

• Offline and Online CARL environment hyperparameters: λed = 0.01, λp = 1, λc =
11, λcur = 1

• Value-Guided CARL environment hyperparameters: λed = 0.01, λp = 2, λc =
11, λcur = 1, τ = 1/60.0

• Proportion of biased samples: p = 0.2

• Number of samples from the environment per iteration i in Algorithm 2: 128
• Initial standard deviation for collecting data (SOLAR): 1 for global and 0.5 for local

training.
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F ADDITIONAL EXPERIMENTS

F.1 POLICY DISTILLATION

In our iterative algorithm, we describe a method to connect policies from two different latent spaces
in equation 8. In Figure 4, we show the learning curves for Online CARL with and without policy
distillation. In general, when utilizing policy distillation, we achieve similar performance to the
iterative variant of our algorithm. Additionally, these results show that with policy distillation, in the
three-pole and swingup tasks we are able to achieve faster convergence. Another observed added
benefit is that with policy distillation we achieve more stability in the final metrics as we add more
samples form our environment across environments.

(a) Planar (b) Swingup

(c) Cartpole (d) Three-pole

Figure 4: Training curves comparing our online algorithm with and without policy distillation on
continuous control environments. The solid curves depict the mean of the experiments and the
standard deviations correspond to the standard deviation of the means.
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F.2 ABLATION STUDY

In order to better understand different components of the CARL loss function in Eq. 6, we conducted
an ablation study over various components of the loss and present the results in Figure F.2.

All the results are generated with the online CARL algorithm for which the hyper-parameters are
consistent across all experiments (with the exception on the parameters removed in the loss function
due to the ablation). In general our results show a similar trend to that presented in Levine et al.
(2020), in which the prediction and consistency loss components are important in guaranteeing
good learning performance. On the contrary, both the curvature loss and the encoding-decoding
regularization loss in CARL play relatively minor roles in guaranteeing the algorithm’s performance.
Different from PCC, in which a low-curvature latent dynamics clearly improves the learning of the
iLQR control algorithm, in CARL the curvature loss might have a less significant role, because our
control algorithm (i.e., soft actor critic) does not necessarily require the (latent) state evolution to be
locally linear.

(a) Planar (b) Swingup

(c) Cartpole (d) Three-pole

Figure 5: An ablation study on different components of the CARL training loss function
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F.3 MORE COMPARISONS BETWEEN PCC AND OFFLINE CARL

All of the following figures were trained using either the PCC or CARL framework. We present 5
representations with the worst control performance (Figure 7) and 5 representations that had the best
control performance (Figure 8), with PCC. Additionally, we present 5 representations that performed
the worst (Figure 9) and 5 representations that performed the best (Figure 10) with offline CARL. We
also present a reference figure in Figure 6. These maps were generated by uniformly sampling a state
s from the underlying environment, creating a corresponding observation x, and using the encoder
create the latent representation z = E[E(·|x)]. All of the latent maps presented in Figures 6-9 were
generated with the same hyperparameters.

The latent maps from the best performing representations are all fairly similar and look similar to
the reference figure. Additionally, the worst performing maps have some similarities e.g. twisting
or folding of the latent space. It is important to note that even though these latent maps are similar,
it is clear that there is a large difference in performance in table 3. Importantly, from the visual
representations, it is clear that iLQR struggles significantly more than SAC in these non-linear
environments as seen in the worst case performance and the corresponding latent maps, where the
latent maps contain additional twisting or curvature resulting in poorer performance.

In this case it is obvious that control in several of the latent representations that performed poorly
would be difficult as there are regions that are highly non-smooth, non-locally-linear; thus, a locally
linear controller such as iLQR is likely to perform poorly. We compare the top and worst 5 repre-
sentations trained using the PCC framework, with the only difference being the controller (SAC vs.
iLQR) in table 3. For almost all tasks, Offline CARL performs better for the worst 5 average results
and the top 5 average results, with the exception of the worst case swingup results.

Figure 6: True underlying state representation for the Planar MDP.

Figure 7: Latent maps for the 5 worst performing representations on average using PCC.

Figure 8: Latent maps for the 5 best performing representations on average using PCC.

Figure 9: Latent maps for the 5 worst performing representations on average using Offline CARL.
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Figure 10: Latent maps for the 5 best performing representations on average using Offline CARL.

Environment Algorithm Worst 5 Avg. Results Top 5 Avg. Results
Planar PCC 6.15± 2.89 62.25± 4.45
Planar Offline CARL 33.46± 4.61 78.87± 0.19
Swingup PCC 68.07± 3.49 95.71± 0.38
Swingup Offline CARL 57.22± 3.71 98.50± 0.0
Cartpole PCC 50.98± 5.44 99.85± 0.08
Cartpole Offline CARL 74.44± 5.28 100.0± 0.0
Three-pole PCC 0± 0 18.42± 2.98
Three-pole Offline CARL 6.17± 1.71 85.77± 0.23

Table 3: Percentage of steps in goal state; averaged over the 5 worst models and the 5 best models.
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F.4 EVOLVING LATENT SPACE MAPS FOR ONLINE CARL

In Figure 11 we show how the latent space for online CARL in the planar case evolves as we increase
the number of iterations in online CARL. The final map looks fairly similar to the reference figure.

(a) i = 1 (b) i = 3 (c) i = 6 (d) i = 10 (e) i = 14

Figure 11: Evolution of the latent representation of the Planar problem learned by online CARL.
Here i represents the number of LCE model-learning episodes (Algorithm 2 in Appendix D).
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F.5 ADDITIONAL SOLAR EXPERIMENTS

In our experiments with Planar, Swingup, and Cartpole, we start from a point randomly chosen from
a region surrounding the start point in the underlying MDP. Additionally in Planar, we randomize the
target at every episode. In Table 4, we present results where we fix the start and goal states, to see if
there is an improvement in the SOLAR’s performance. We also shorten the horizon for Swingup to
100 to see if long horizon has an effect on the SOLAR’s performance. We do not present any new
results on 3-pole task as the starting and goal states were already fixed in this problem. The results
in Table 4 indicate a dramatic improvement for Planar when we fix the start and goal states, and a
modest improvement in Cartpole and Swingup. However, these SOLAR results are still incomparable
to the performance of any of CARL variants and Dreamer.

Environment Algorithm Number of Samples Avg Result Best Result
Planar SOLAR 5000 (VAE) + 40000 (Control) 26.70± 5.92 41± 7.28
Cartpole SOLAR 10000 (VAE) + 40000 (Control) 14.60± 1.70 20.05± 2.91
Swingup SOLAR 20000 (VAE) + 40000 (Control) 22.40± 3.07 34.03± 2.09

Table 4: Percentage of steps in goal state; averaged over all models and the best model. Additionally,
the number of samples used for training for SOLAR are under the condition that there is the same
start and same goal state for all episodes.
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F.6 DREAMER: IMPLEMENTATION AND ADDITIONAL RESULTS

Dreamer Implementation. For dreamer we used the default parameters presented in Hafner et al.
(2020a), so all images were presented as (64, 64, 3) images. The only change was for Planar, where
a sequence length of 20 was used, otherwise, all other sequence lengths were 50. Different from
CARL and other LCE methods, which can directly use the latent distance to goal as the reward
to learn the RL policy, in Dreamer this reward construction becomes non-trivial as the encoder is
modeled with an RNN that takes an observation trajectory as the input. Therefore, to provide reward
samples for the Dreamer training procedure we construct the several environment-based rewards,
whose implementation details are given below:

Pixel-based: We use the negative distance between the current observation xt and the goal observation
xg, i.e., −||xt − xg||22, as the reward signal that Dreamer uses as input to learn the reward in the
resulting latent space.

Oracle-based: We use the negative distance between the current (unobserved) state st and the goal
state sg , i.e., −||st − sg||22, as the reward signal that Dreamer uses as input to learn the reward in the
resulting latent space. To facilitate learning in Dreamer in some domains, we only use a subset of the
state variables (e.g., only the angle and not the angular velocity in Swingup) to define this reward
function.

Since CARL algorithms only assume access to the observation spaceX , and not to the underlying state
space S , it is more fair to compare them with Dreamer-Pixel, and comparison with Dreamer-Oracle
is definitely in favor of Dreamer.

Additional Results. In Fig. 12, we plot dreamer with more environment samples. We see that in
general, dreamer will converge for most of our environments, but it takes significantly more time-steps
(90x, 3x, 2x) for swingup, cartpole, and three-pole respectively with the oracle-based dreamer. The
pixel based rewards for dreamer also leads to generally slower convergence for dreamer, and in the
case of the swingup task leads to supoptimal results. We also opt to not present results of Dreamer on
Planar as we were unable to obtain good results for Dreamer on this task when the initial and goal
states are randomly sampled.

(a) Swingup (b) Cartpole

(c) Three-pole

Figure 12: Training curves for both implementations of Dreamer with significantly longer timesteps.
Almost all oracle implementations converge, but the pixel based reward can lead to suboptimal results.
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