Rollout Allocation Strategies for Classification-based Policy Iteration

Victor Gabillon
Alessandro Lazaric
Mohammad Ghavamzadeh

VICTOR.GABILLON@INRIA.FR
ALESSANDRO.LAZARICQINRIA.FR
MOHAMMAD.GHAVAMZADEHQINRIA.FR

INRIA Lille - Nord Europe, Team Sequel., 40 avenue Halley, 59650 Villeneuve d’Ascq, France

Abstract

Classification-based policy iteration algo-
rithms are variations of policy iteration that
do not use any kind of value function rep-
resentation. The main idea is 1) to replace
the usual value function learning step with
rollout estimates of the value function over a
finite number of states, called the rollout set,
and the actions in the action space, and 2) to
cast the policy improvement step as a classifi-
cation problem. The choice of rollout alloca-
tion strategies over states and actions has sig-
nificant impact on the performance and com-
putation time of this class of algorithms. In
this paper, we present new strategies to allo-
cate the available budget (number of rollouts)
at each iteration of the algorithm over states
and actions. Our empirical results indicate
that for a fixed budget, using the proposed
strategies improves the accuracy of the train-
ing set over the existing methods.

1. Introduction

Classification-based policy iteration algorithms were
proposed as an alternative to standard policy itera-
tion (Lagoudakis & Parr, 2003b; Fern et al., 2004).
These methods have been theoretically analyzed (Fern
et al., 2006; Lazaric et al., 2010) and successfully ap-
plied to benchmark problems (Lagoudakis & Parr,
2003b; Fern et al., 2004). They replace the value
function learning step with rollout estimates of the
value function Q™ over a finite number of states Dr =
{x;}X,, called the rollout set, and all the actions in the
action space, and cast the policy improvement step as
a classification problem. The rollouts aim to identify
the greedy actions (w.r.t. the current policy) at the
states in the rollout set in order to form a training set
for the policy improvement classifier. As a result, the
strategies used to allocate the available rollouts over
states and actions have significant impact on the per-

formance and computation time of these algorithms.
To the best of our knowledge, there has been only one
attempt to explicitly address this issue and to present
strategies other than uniform allocation over the states
and actions (Dimitrakakis & Lagoudakis, 2008). How-
ever, the proposed strategies are only over states and
allocation over actions is simply uniform.

In this paper, we present new strategies to allocate the
available budget (number of rollouts) at each iteration
of the algorithm over states and actions. We empiri-
cally evaluate the performance of the proposed rollout
allocation strategies and compare them with the exist-
ing methods in two widely-used reinforcement learning
(RL) problems: mountain car and inverted pendulum.

2. Preliminaries

A discounted Markov decision process M is a tuple
(X, A,r,p,7), where the state space X is a bounded
closed subset of a Euclidean space R?, the set of ac-
tions A is finite (| A] = M < 00), the reward function
r: X x A — R is uniformly bounded by Rpy.x, the
transition model p(-|z,a) is a distribution over X, and
v € (0,1) is a discount factor. We use 7 to denote
a deterministic policy m : X — A. The action-value
function for a policy m, Q™, is the solution to the sys-
tem Q" (z,a) = r(z,a) + 7 [, p(dylz, a)Q" (y, 7 (y)).
The optimal action-value function Q* is defined as
Q*(z,a) = r(x,a) + v [, p(dy|z, a) max, c4 Q* (y,a').
A deterministic policy 7 is greedy w.r.t an action-value
function @, if 7(z) € argmax,c 4 Q(z,a),Vz € X.
Greedy policies are important because any greedy pol-
icy w.r.t. Q* is optimal. We define the greedy policy
operator G as (Gr)(z) = argmax, 4 Q" (z,a).!

3. Rollout Classification-based Policy
Iteration

A template for this class of algorithms is shown in Fig-
ure 1. The algorithm begins with an arbitrary policy
mo in the policy space II. At each iteration k, given
policy 7y, a new policy 741 is computed as the best

!The tie among the actions maximizing Q™ (x, a) is bro-
ken in an arbitrary but consistent manner.

Rollout Allocation Strategies for Classification-based Policy Iteration

Input: policy space 11, state distribution p, total bud-
get (available # of rollouts) per iteration L
Initialize: Let mo € II be an arbitrary policy
for k=0,1,2,... do
Construct a rollout set Dp = {z:} 1, z; < p
Set Dr =0, ¢(z,a) =0 for any x € Dr and a € A
for!=1,2,...,L do
x = Select-State(Dk, .. .)
a = Select-Action(z, A4, . ..)
c(z,a) = c(z,a) + 1
Perform a rollout according to 7 and return
R:(k:n,a) (z,a) =r(z,a) + ZtZl 7tr($t: ﬂ'k(:rt))»
with ! ~p(- \mtil,ﬂ'k(mtfl)), z! ~p(-|z,a)

Q™ (3,0) = ziey 55 BT (,0)
end for
for all states z € Dr do
if a dominating action a* exists in = then
Dy =Dr U{(z,a”),+}
Dr =DrU{(z,a),—}, Va #a*
end if
end for
mr+1 = Classifier(Dr)
end for

Figure 1. A template for rollout classification-based policy
iteration algorithms.

approximation of Gmy, by solving a classification prob-
lem. At the beginning of each iteration, a rollout set
Dpr is constructed by sampling N states from a dis-
tribution p. While the number of rollouts used at the
current iteration is less than the total budget L, i.e.,
the available number of rollouts per iteration, a state
in Dg and an action in A are selected according to
Select-State(-) and Select-Action(-) procedures. After
the total budget is spent, a training set D is formed
using the estimated action-value function as follows:
for each © € Dg, if the estimated value Q™ (x,a*) is
greater than the estimated value of all other actions
(with high confidence), the state-action pair (x,a*) is
added to the training set with a positive label. In this
case, (z,a) for the rest of the actions are labelled nega-
tive and added to the training set. Finally, a classifier
is trained using Dp and generates a new policy 41
as an approximation to Gmg. The classifier minimizes
the number of misclassifications in Dr, i.e.,

|Dr|
Moyl = argergin ﬁ ; T{a"(x;) # n(z:)} - (1)

The main bottleneck of these algorithms is the com-
putational cost of the rollouts needed to reach a good
level of accuracy in selecting the greedy action at the
rollout states. Previous experimental studies suggest
that the main source of (computational) loss is at the
states in which i) the difference between the action-
values of the greedy and sub-greedy actions is small
and ii) a greedy action can be identified without ex-
hausting all the rollouts allocated to it. In this paper,

we present new strategies for rollout allocation over
states and actions in order to deal with these issues.

4. Rollout Allocation Strategies

In the following we consider a slightly simplified ver-
sion of the algorithm in Figure 1, in which no high
confidence test is used and all the rollout states are
included in the training set. This way we can focus
on the effectiveness of the allocation strategies in gen-
erating an accurate training set when a fixed budget
L is available. The objective of maximizing the accu-
racy of the training set is consistent with the problem
solved by the classifier. In fact, the classifier tries to
fit to the training samples by minimizing the empirical
average number of mistakes (Eq. 1). Thus, inaccuracy
in training set may lead the classifier to approximate
a policy which is far from the greedy one.

4.1. Strategies over Actions

While the global budget L is known and fixed in ad-
vance, the number of rollouts available at each rollout
state might be different depending on the state alloca-
tion strategy. On one hand, the objective is to reduce
as much as possible the number of rollouts needed to
achieve a fixed accuracy at each state. For this sce-
nario, one can consider using Hoeffding or Bernstein
races strategies. On the other hand, the budget L is
uniformly divided over states and the objective of the
strategy over actions is to allocate the L/N rollouts
available in each state so as to maximize the accuracy
of the estimated greedy actions. For this scenario, we
describe below a successive rejects algorithm.

The successive rejects (SR) strategy was proposed
by Audibert et al. (2010) in the bandit setting for the
identification of the best arm. The budget L(z) =
L/N is the only input of this method and is split into
M —1 phases. At the end of each phase the action with
the smallest estimated value Q(z, a) is discarded from
the action set and the rollouts in the next phase are
allocated uniformly on the remaining actions. When
all the L(z) rollouts have been allocated, the action
(among the two remaining ones) with the highest es-
timated action-value is chosen as the greedy action in
x. More formally, the phases are designed so that the
number of rollouts allocated to the actions are:

1 L@ -M
log(M) M +1—m

where log(M) = 0.5 + E%:z 1/m and a™ is the ac-
tion discarded at the end of the m-th phase. Com-
pared to uniform, this strategy samples more the most
promising arms in order to discriminate them more ac-
curately. It is possible to prove that the SR strategy
optimally minimizes the probability of mistakes in the
identification of the greedy action (up to a log factor).

P(x,am):" —‘ vmel,...,.M—1,

Rollout Allocation Strategies for Classification-based Policy Iteration

4.2. Strategies over States

Previous work (Fern et al., 2006; Lazaric et al., 2010)
showed that a mistake in selecting the greedy action
should be weighted by the regret incurred by the wrong
action. According to this observation, we define a
regret-based (RB) strategy over states that allocates
rollouts to states at which the current estimation of
the greedy action might be wrong, and thus, lead to
a big regret. In a state x we define the regret as the
difference between the action-values of the true and
estimated greedy actions

pi(x) = Qx,a”(2)) — Qx, a7 (x)) , (2)

where @] (x) is the estimated greedy action in state
x after [rollouts. Unfortunately, the regret p is not
available since the action-value function is unknown.
Nonetheless, similar to Dimitrakakis & Lagoudakis
(2008), we use UCB-like confidence intervals on the
action-values to build an over-estimation of the re-
gret. In particular, we define a high-probability upper
bound on the true regret as

pi(z) = max (Q<m,a>+ w)

a#af (z) c(z,a)
M Ot a7 () — 2log c(x)
<Q(s 4 ()) c(x,&?(w)))) (3)

where c(z) =) . 4c(z,a). Given the estimated re-
gret, the next rollout is allocated to the state with the
highest regret. It is worth noting that the RB strat-
egy is completely independent from the strategy used
to allocate rollouts over actions in a selected state.

5. Experiments

In this section, due to the lack of space, we only report
the empirical evaluation of action allocation strategies
(allocation over states is uniform). The experiments
are made in two standard RL problems: mountain car
and inverted pendulum. There are only three possible
actions in these domains. To better show the differ-
ence between the action allocation strategies, we arti-
ficially increase the number of actions using a method
suggested in RL competition 2009. We map extra ac-
tions to the three original actions independently from
the state. We will describe the mapping used for each
problem in Sections 5.1 and 5.2.

5.1. Mountain Car

The mountain car problem is to drive a car to the
top of a one-dimensional hill. The car is not powerful
enough to accelerate directly up the hill, thus, it must
learn to oscillate back and forth to build up enough
inertia. There are three possible actions: forward +1,
reverse —1, and stay 0. The reward is —1 on all time
steps until the car reaches its goal at the top of the

hill, which ends the episode with a reward 0. The dis-
count factor is set to 0.99. We use the formulation
described in Dimitrakakis & Lagoudakis (2008) with
uniform noise in [—0.2,0.2] added to the actions. We
increase the number of actions by mapping one to for-
ward, one to reverse, and the rest to the stay action.

5.2. Inverted Pendulum

The problem is to balance a pendulum at the upright
position by applying force to the cart it is attached to.
There are three possible actions: left (—50N), right
(+50N), and stay (ON), with uniform noise in [—15, 15]
added to them. The reward is 0 as long as the pen-
dulum is above the horizontal line. The episode ends
with reward —1 when the pendulum goes below the
horizontal line. The discount factor is set to 0.95. We
use the formulation described in Lagoudakis & Parr
(2003a). When we increase the number of actions, we
map one to right, one to left, and define the rest as
stochastic actions that with equal probabilities behave
as one of the three possible actions.

5.3. Evaluation

Following the setting of Dimitrakakis & Lagoudakis
(2008), we use a multi-layer perceptron with 10 hid-
den units as the classifier in our experiments. To train
this classifier, we run stochastic gradient descent with
a learning rate of 0.5 for 200 iterations. We noticed
that 25 iterations used by Dimitrakakis & Lagoudakis
(2008) is not enough for training the classifier in all
cases. In Figures 2 and 3, we compare the performance
of two rollout allocation strategies over actions, uni-
form and successive rejects, for different values of the
available budget L, the number of actions M, and the
number of states in the rollout set N. In these figures,
the horizontal axis is L/M N, the number of rollouts
that the uniform strategy allocates to each state-action
pair. The results are averaged over 1000 runs.

We first compare these two strategies in terms of the
accuracy of the training sets they generate. We use
the two strategies to find the greedy actions w.r.t. to
a fixed deterministic policy that takes action forward if
the velocity is positive and backward otherwise, for 400
states in the mountain car problem. The top-left panel
in Figure 3 shows the difference between the percent-
age of mistakes made by these two strategies. Figure 2
and the remaining panels in Figure 3 show the differ-
ence between the performance of the policies learned
after 5 iterations by both strategies in mountain car
and inverted pendulum, respectively. In mountain car,
the performance of a policy is evaluated in terms of the
number of steps to goal with a maximum of 300 steps.
In inverted pendulum, the performance of a policy is
evaluated in terms of the number of steps that it keeps
the pendulum balanced with a maximum of 3000 steps.

Rollout Allocation Strategies for Classification-based Policy Iteration

a5 o w0 1m0
Improvement (steps): D

Number of states in the rollout set: 10 Number of states in the rollout set: 20

& & ..
8 A 8 A
s s
@ - @ Q-
K] K]
< o < 2
© ©
o o
T T T T T T T T T T T T
2 5 10 20 50 100 2 5 10 20 50 100
Budget (L/MN) Budget (L/MN)
Number of states in the rollout set: 50 Number of states in the rollout set: 100
2 .. 2 .
27 27
"] .. *] .
3 3
s s
2 &1 e &1
S 8
< 2 < 2
© ©
© - o

T T T T T T T T T T T T
2 5 10 20 50 100 2 5 10 20 50 100

Budget (LIMN) Budget (L/MN)
Figure 2. The performance of the learned policy in moun-
tain car.

The results in the top-left panel of Figure 3 indicate
that using the SR allocation strategy improves the ac-
curacy of the training set used by the classifier at each
iteration. All the other graphs show that these im-
provements effectively propagate through iterations fi-
nally leading to a better performance for the final pol-
icy learned by the algorithm. In particular, we report
results for different combinations of parameters L, M,
and N. In both mountain car and inverted pendulum
extreme values of the parameters make the problem
either too hard or too easy to solve for both strate-
gies, which achieve almost the same performance. For
instance, consider the top-left graph of Figure 2 when
N =10, M = 100, and L/MN = 2. In this case not
enough rollouts are available and both SR and Uni-
form generate poor training sets. Nonetheless, as soon
as the budget increases SR effectively takes advantage
of a better allocation of the rollouts and finally ob-
tains policies with a better performance than Uniform
by up to 70 steps. When the budget becomes even big-
ger, the Uniform allocation strategy has enough roll-
outs to achieve an accuracy similar to SR thus leading
again to a similar performance. Another interesting
effect that can be noticed from the graphs is that the
difference in performance between the two strategies
increases with the number of actions. In fact, the new
actions are replica of the sub-greedy actions, thus mak-
ing the identification of the greedy action even more
difficult for the Uniform strategy. On the other hand,
SR is more and more effective in discarding sub-greedy
actions and identifying the greedy one. Finally, we no-

00 0 1000 2000
Improvement (steps): - (b)

(b) Number of states in the rollout set: 50

40 0 2
Improvement (%): [:l (a)

(a) Number of states in the rollout set: 400

8 4 g
8 8
s s
a &1 o &1
c c
S S
k=1 S
< 24 < 24
© - © -
o o -
T T T T T T T T T T
2 5 10 20 50 100 3 5 7 10 15 20
Budget (L/MN) Budget (L/MN)
(b) Number of states in the rollout set: 100 (b) Number of states in the rollout set: 200
£ -. £ -.
"] . " .
=} =}
o & o &
c c
K] E<]
< 2 g o
© - © 4
o o -

s s 7 0 15w s s 7 10 15w
Budget (L/MN) Budget (L/MN)
Figure 3. The accuracy of the training set in mountain car
(top-left) and the performance of the learned policy in in-
verted pendulum (top-right and bottom).

tice that increasing the size of the rollout set makes the
difference bigger although we expect it to stop increas-
ing when very large rollout sets are used. In fact, the
low complexity of the classifier prevent it from over-
fitting, thus increasing even more the size of the rollout
set could make Uniform perform as SR even if the sec-
ond generates more accurate training sets. The same
results hold for the inverted pendulum. The negative
values in the graphs are mostly due to noise.

References

Audibert, J.-Y., Bubeck, S., and Munos, R. Best arm
identification in multi-armed bandits. In COLT, 2010.

Dimitrakakis, C. and Lagoudakis, M. Rollout sampling ap-
proximate policy iteration. Machine Learning Journal,
72(3):157-171, 2008.

Fern, A., Yoon, S., and Givan, R. Approximate policy
iteration with a policy language bias. In NIPS, 2004.

Fern, A., Yoon, S., and Givan, R. Approximate policy it-
eration with a policy language bias: Solving relational
Markov decision processes. Journal of Artificial Intelli-
gence Research, 25:85-118, 2006.

Lagoudakis, M. and Parr, R. Least-squares policy itera-
tion. JMLR, 4:1107-1149, 2003a.

Lagoudakis, M. and Parr, R. Reinforcement learning as
classification: Leveraging modern classifiers. In ICML,
pp. 424-431, 2003b.

Lazaric, A., Ghavamzadeh, M., and Munos, R. Analysis
of a classification-based policy iteration algorithm. In
ICML, 2010.

