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Abstract
We study two model selection settings in stochas-
tic linear bandits (LB). In the first setting, which
we refer to as feature selection, the expected re-
ward of the LB problem is in the linear span of at
least one of M feature maps (models). In the sec-
ond setting, the reward parameter of the LB prob-
lem is arbitrarily selected from M models repre-
sented as (possibly) overlapping balls in Rd. How-
ever, the agent only has access to misspecified
models, i.e., estimates of the centers and radii of
the balls. We refer to this setting as parameter se-
lection. For each setting, we develop and analyze
a computationally efficient algorithm that is based
on a reduction from bandits to full-information
problems. This allows us to obtain regret bounds
that are not worse (up to a

√
logM factor) than

the case where the true model is known. This is
the best reported dependence on the number of
models M in these settings. Finally, we empir-
ically show the effectiveness of our algorithms
using synthetic and real-world experiments.

1. Introduction
Learning under bandit feedback is a class of online learning
problems in which an agent interacts with the environment
through a set of actions (arms), and receives rewards only
from the arms that it has pulled. The goal of the agent is to
maximize its expected cumulative reward without knowl-
edge of the reward distributions of the arms. Multi-armed
bandit (MAB) is the simplest form of this problem (Lai
& Robbins, 1985; Auer et al., 2002a; Lattimore & Szepes-
vari, 2020; Moradipari et al., 2018). Linear bandit (Dani
et al., 2008; Rusmevichientong & Tsitsiklis, 2010; Abbasi-
Yadkori et al., 2011) is a generalization of MAB to (possibly)

1Department of Electrical and Computer Engineering, Uni-
versity of California, Santa Barbara, USA 2DeepMind, London,
UK 3Google Research, Mountain View, USA. Correspondence to:
Ahamdreza Moradipari <ahmadreza moradipari@ucsb.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

infinitely many arms, each associated with a feature vec-
tor. The mean reward of each arm is assumed to be the
dot product of its feature vector and an unknown parame-
ter vector. This setting contains contextual linear bandit
in which action sets and feature vectors change at every
round. The main component of bandit algorithms is to bal-
ance exploration and exploitation: to decide when to explore
and learn about the arms, and when to exploit and select
the action with the highest estimated reward. The most
common exploration strategies are optimism in the face of
uncertainty (OFU) or upper confidence bound (UCB) (Auer
et al., 2002a; Dani et al., 2008; Abbasi-Yadkori et al., 2011;
Moradipari et al., 2020b; 2022a), and Thompson sampling
(TS) (Thompson, 1933; Agrawal & Goyal, 2013; Russo
& Van Roy, 2014; Abeille et al., 2017; Moradipari et al.,
2020a; 2021).

In this paper, we study model selection in stochastic linear
bandits (LB), where the LB problem at hand is selected
from a set of M models. The agent has information about
the models but does not know the identity of the one(s) that
the new LB problem has been selected from. The goal of
the agent is to identify the true model(s) and transfer its
(their) collected experience to speedup the learning of the
task at hand. It is a common scenario in many application
domains that the new task belongs to a family of models that
are either known accurately or with misspecification. For
example, it is reasonable to assume that the customers of an
online marketing website, the users of an app, or the patients
in a medical trial belong to a certain number of categories
based on their shopping and browsing habits or their genetic
signatures. It is also common these days that websites, apps,
and clinics have a large amount of information from each of
these categories that can be used to build a model.

Model selection is particularly challenging with bandit in-
formation. A common approach is to consider each model
as a black-box that runs a bandit algorithm with its own
information, and then a meta algorithm plays a form of
bandit-over-bandits strategy with their outcomes. These al-
gorithms often achieve a regret of Õ(

√
MT ), and thus, are

not desirable when the number of models M is large. In this
paper, we consider two bandit model selection settings and
show that it is possible to improve this rate so that the regret
scales as

√
logM with the number of models. The main



Feature and Parameter Selection in Stochastic Linear Bandits

innovation in our algorithms is utilizing reductions from
bandits to full-information problems, and performing model
selection in the full-information setting for which much
stronger results exist. The main reason for Õ(

√
MT ) regret

in bandit-over-bandits algorithms is that no information is
shared among the models (bandit algorithms), i.e., when a
bandit algorithm is used to take an action in a round, the re-
sulting feedback is not shared with the other models. On the
other hand, model selection in the full-information setting
allows the model to share information among each other,
which makes the superior

√
logM regret bound possible.

The two model selection settings we consider in this paper
are: feature selection, where the mean reward of the LB
problem is in the linear span of at least one of M given
feature maps (models), and parameter selection, where the
reward parameter of the LB problem is arbitrarily selected
from M models represented as (possibly) overlapping balls
in Rd. Here the models can be misspecified, i.e., only esti-
mates of the centers and radii of the balls are given to the
algorithm. We derive algorithms in these settings that use
reductions from bandits to full-information. Our algorithms
are computationally efficient and have regret bounds that
are not worse (up to a

√
logM factor) than the case where

the true model is known. We achieve this by properly instan-
tiating existing algorithmic paradigms: SquareCB (Foster
& Rakhlin, 2020) and OFUL (Abbasi-Yadkori et al., 2011).
The SquareCB algorithm in its original form uses a set of
static experts, but we need adaptive (learning) experts in
order to have a computational efficient algorithm with the
desired regret in our feature selection setting. Working with
adaptive (time-varying) experts requires appropriate and
non-trivial modifications to the proof of SquareCB.

There are mainly two types of reductions from bandits to
full-information problems. The first one is the classical
reduction that uses importance weighted estimates. A pop-
ular algorithm in this class is EXP3 that uses Exponen-
tially Weighted Average forecaster as the full-information
algorithm. The bandit model selection strategy of Agar-
wal et al. (2017), known as CORRAL, also uses this type
of reduction with an online mirror descent method and a
carefully selected mirror map as the full-information algo-
rithm. Given that importance weighted estimates are fed
to the full-information algorithm, a

√
M term is in gen-

eral unavoidable in the regret of the methods that use this
type of reduction. In this work, we use a different type of
full-information reduction introduced by Foster & Rakhlin
(2020) and Abbasi-Yadkori et al. (2012). Here, the full-
information algorithm has direct access to its losses without
any importance weighted estimates, and thus, allows us to
obtain regrets that scales as

√
logM .

2. Problem Formulation
In this section, we first provide a brief overview of stochastic
linear bandits. We then describe the two model selection
settings studied in the paper. We conclude by introducing
a regression oracle used by our algorithms that is based on
sequential prediction with expert advice and square loss.

2.1. Stochastic Linear Bandits

A stochastic linear bandit (LB) problem is defined by a se-
quence of T interactions of a learning agent with a stochastic
environment. At each round t ∈ [T ], the agent is given a
decision set At ⊂ Rd from which it has to select an action
at. Upon taking the action at ∈ At, it observes a reward
yt = 〈φt(at), θ∗〉 + ηt, where θ∗ ∈ Rd is the unknown
reward parameter, φt(a) ∈ Rd is the feature vector of action
a at round t, and ηt is a zero-mean R-sub-Gaussian noise.
When the features correspond to the canonical basis, this
formulation reduces to multi-armed bandit. In case the fea-
tures depend on both an action a ∈ A and a context x ∈ X ,
i.e., φt(at) = φ(xt, at), this LB formulation is called con-
textual linear bandit. It is also common in practice that
the action set is fixed and finite, i.e., A = [K], in which
case we are in the finite K-action setting. The history Ht

of a LB algorithm up to round t consists of all the contexts,
actions, and rewards that it has observed from the beginning
until the end of round t − 1, i.e., Ht = {(xs, as, ys)}t−1s=1,
or equivalently Ht = {(φs(as), ys)}t−1s=1.

The goal of the agent in LB is to maximize its expected
cumulative reward in T rounds, or equivalently to minimize
its T -round (pseudo) regret, i.e.,

R(T, θ∗) =
T∑
t=1

〈φt(a∗t ), θ∗〉 − 〈φt(at), θ∗〉, (1)

where a∗t = argmaxa∈At〈φt(a), θ∗〉 is the optimal action
in round t.

2.2. Feature Selection Setting

In this setting, the agent is given a set of M feature maps
{φi}Mi=1 with dimension d. We assume that the expected
reward of the LB problem belongs to the linear span of at
least one of these M models (features), i.e., there exists an
i ∈ [M ] and a θi∗ ∈ Rd, such that for all rounds t ∈ [T ],
contexts x ∈ X , and actions a ∈ A, we may write the mean
rewards as E[yt] = 〈φi(x, a), θi∗〉.1 We refer to such feature
maps as true models and denote them by i∗. Note that the
agent does not know the identity of the true model(s) i∗.

As a motivational example for this setting, we can consider
a recommender system that has trained M models (e.g., M
neural networks) to predict the score of customer-item pairs.

1Note that we use the contextual linear bandit notation for this
setting and in the corresponding sections.
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Each model corresponds to a particular mood or type of the
customer, or any other latent component of the customer’s
state. Each model provides an embedding for customer-item
pairs and the score is linear in this embedding (think of an
embedding as the one to the last layer of a trained NN).
When a new customer arrives, the recommender system
should find out as soon as possible which of the M models
(embeddings) is the best match to the current mood/type of
this customer in order to recommend her desirable items.

We make the following standard assumption on the bounded-
ness of the reward parameters and features of the M models.
Assumption 2.1. There are constants L, S,G ≥ 0, such
that for all i ∈ [M ], t ∈ [T ], x ∈ X , and a ∈ A, we have
‖θi∗‖ ≤ S, ‖φi(x, a)‖ ≤ L, and |〈φi(x, a), θi∗〉| ≤ G.

Our goal here is to design an algorithm that minimizes
transfer regret, which in this setting we define it as

R(T ) =
T∑
t=1

〈φi∗(xt, a∗t ), θi∗∗ 〉 − 〈φi∗(xt, at), θi∗∗ 〉, (2)

where a∗t = argmaxa∈A〈φi∗(xt, a), θi∗∗ 〉. In the results
we report for this setting in Section 3, we make two as-
sumptions: 1) the feature maps are all known (no model
misspecification), and 2) the number of actions is finite, i.e.,
we are in the finiteK-action setting described in Section 2.1.
However, we believe that our algorithm and analysis can
be extended to the case of having misspecified models and
convex action sets using the results in Foster et al. (2020).

2.3. Parameter Selection Setting

In this setting, unlike the classical setting in Section 2.1, we
no longer assume that the unknown parameter θ∗ can be any
vector in Rd. Rather, θ∗ can be generated from M possible
reward models, each defined as a ballB(µi, bi) = {θ ∈ Rd :
‖θ − µi‖ ≤ bi}, with center µi ∈ Rd and radius bi ≥ 0.
Note that the models (balls) may overlap and do not have to
be disjoint. The M models can be thought of the responses
of M types (or clusters) of customers to different items in
a recommender system or the reactions of patients with M
genotypes to a set of drugs. The radii {bi}Mi=1 represent the
variation within each cluster. The reward parameter θ∗ of
the new task (LB problem) is arbitrarily selected from the
M models. For example, it can be adversarially selected
from the union of the models, i.e., θ∗ ∈

⋃M
i=1B(µi, bi). In

this case, we denote by I∗, the set of indices of the balls
that contain θ∗. Since the models are often computed from
(finite) historical data, it is reasonable to assume that only
estimates of their centers {µ̂i}Mi=1 are available, together
with upper-bounds on the error of these estimates {ci}Mi=1,
such that ‖µi − µ̂i‖ ≤ ci, for all i ∈ [M ].

The agent has no knowledge either about θ∗ or the process
according to which it has been selected. The only informa-
tion given to the agent are: 1) estimates µ̂i of the center

of the models, 2) upper-bounds ci on the errors of these
estimates, and 3) the exact radii bi of the models, for all
i ∈ [M ]. This means that although θ∗ is selected from the
actual models B(µi, bi), the agent has only access to es-
timated models B(µ̂i, bi + ci) that have more uncertainty
(their corresponding balls are larger). For simplicity, we
assume that the exact values of radii {bi}Mi=1 are known.
However, our results can be easily extended to the case that
instead of bi’s, their estimates b̂i and upper-bounds on their
errors c′i, i.e., ‖bi − b̂i‖ ≤ c′i, for all i ∈ [M ], are given
to the agent. In this case, the agent has to use even more
uncertain estimates of the models B(µ̂i, bi + ci + c′i).

Our goal is to design an algorithm that can transfer knowl-
edge from these estimated models and learn the new task
with parameter θ∗ more efficiently than when it is indepen-
dently learned. This goal can be quantitatively stated as
minimizing the transfer regret,

R(T ) = sup
θ∗∈

⋃M
i=1 B(µi,bi)

R(T, θ∗), (3)

where R(T, θ∗) is the regret defined by (1). We make the
following standard assumption on the boundedness of the
features and expected rewards.
Assumption 2.2. There exist constants L,G ≥ 0, such that
∀t ∈ [T ] and ∀a ∈ ⋃Tt=1At, we have ‖φt(a)‖ ≤ L, and
∀θ ∈ ⋃Mi=1B(µi, bi), we have |〈φt(a), θ〉| ≤ G.

2.4. Regression Oracle

In both model selection settings studied in the paper, our
proposed algorithms use a regression oracle that is based
on sequential prediction with expert advice and square
loss. Following Foster & Rakhlin (2020) and Foster et al.
(2020), we refer to this regression oracle as SqAlg. We
can consider SqAlg as a meta algorithm that consists of
M learning algorithms (or experts), each corresponding to
one of our M models, and returns a prediction by aggregat-
ing the predictions of its experts. More precisely, in each
round t ∈ [T ], SqAlg takes the current context-action pair
(xt, at), or equivalently φt(at), as input, and gives them
to its M experts to predict their reward, i.e., f it (Ht) =
f i(φt(at);Ht), ∀i ∈ [M ], given the current history Ht.
Then, the meta algorithm SqAlg aggregates its experts’
predictions, {f it (Ht)}Mi=1, given their current weights, and
returns its own prediction ŷt = SqAlgt(φt(at);Ht). Upon
observing the actual reward yt, SqAlg updates the weights
of its experts according to the difference between their pre-
dictions f i(φt(at);Ht) and the actual reward yt.

The regression oracles (SqAlg) used by our model selection
algorithms differ in the prediction algorithm used by their
experts. However, in both cases, SqAlg aggregates its
experts’ predictions using an algorithm by Haussler et al.
(1998) (see Algorithm 3 in Appendix A). The performance
of SqAlg is evaluated in terms of its regretRSq(T ), which
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is defined as its accuracy (in terms of square loss) w.r.t. the
accuracy of the best expert in the set, i.e.,

T∑
t=1

(ŷt − yt)2 − min
i∈[M ]

T∑
t=1

(f it (Ht)− yt)2 ≤ RSq(T ). (4)

In each round t, we define the oracle prediction for a context
x and an action a as ŷt(x, a) := SqAlgt(x, a;Ht). As
shown in Haussler et al. (1998), in case all observations
and experts’ predictions are bounded in an interval of size
`, this regret can be bounded as RSq(T ) ≤ `2 logM (see
Appendix A for more details). We use this regret bound in
the analysis of our proposed algorithms.

3. Feature Selection Algorithm
In this section, we derive an algorithm for the feature se-
lection setting described in Section 2.2 that is based on the
SquareCB algorithm (Foster & Rakhlin, 2020). We refer to
our algorithm as feature selection SquareCB (FS-SCB). We
prove an upper-bound on the transfer regret of FS-SCB in
Section 3.1, and provide an overview of the related work
and a discussion on our results in Section 3.2.

Algorithm 1 contains the pseudo-code of FS-SCB. In each
round t ∈ [T ], the algorithm observes a context xt ∈ X
and passes it to its regression oracle SqAlg to produce
its reward predictions ŷt(xt, a),∀a ∈ [K]. Each expert in
SqAlg corresponds to one of the M models and is a ridge
regression algorithm with the feature map of that model.
Expert i ∈ [M ] predicts the reward of the context xt, for
each action a ∈ [K], as f i(xt, a;Ht) = 〈φi(xt, a), θ̂it〉,
where θ̂it = argminθ ‖Φi>t θ − Yt‖2 + λi‖θ‖2. We may
write θ̂it in closed-form as θ̂it = (V λit )−1Φi>t Yt. In these
equations, Yt = (y1, . . . , yt−1)> is the reward vector; Φit
is the feature matrix of the ith model, whose rows are
φi(x1, a1), . . . , φi(xt−1, at−1); λi is the regularization pa-
rameter of model i, which our analysis shows that it only
needs to be larger than one, i.e., λi ≥ 1; and finally
V λit = λiI+Φ>t Φt. The meta algorithm SqAlg aggregates
the experts’ predictions {f i(xt, a;Ht)}Mi=1 and produces its
own predictions ŷt(xt, a), ∀a ∈ [K], using Algorithm 3 in
Appendix A (see Remark 3.1).

The next step in FS-SCB is computing the action with the
highest predicted reward, i.e., a′t = argmaxa∈[K] ŷt(xt, a),
and using it to define a distribution pt ∈ ∆K over the actions
(see Eq. 5). The distribution pt in (5) is defined similarly to
the probability selection scheme of Abe & Long (1999), and
assigns a probability to every action inversely proportional
to the gap between its prediction and that of a′t. The algo-
rithm then samples its action at from pt, observes reward
yt, and feeds the tuple (xt, at, yt) to the oracle to update
its weights over the experts. Our analysis in Section 3.1
and Appendix B suggest to set the exploration parameter to

Algorithm 1 Feature Selection Square-CB (FS-SCB)
Input: Models {φi}Mi=1, Confidence Parameter δ, Learn-
ing Rate α, Exploration Parameter κ
for t = 1 to T do

Observe context xt
Oracle predicts:
ŷt(xt, a) = SqAlgt(xt, a;Ht), ∀a ∈ [K]

Define a distribution pt over the actions:

pt(a) =


1

κ+α
(
ŷt(xt,a)−ŷt(xt,a′t)

) , a 6= a′t,

1−∑a 6=a′t
pt(a), a = a′t,

(5)

where a′t = argmaxa∈[K] ŷt(xt, a);
Sample action at ∼ pt(·) and play it;
Observe reward yt = 〈φi∗(xt, at), θi∗∗ 〉+ ηt;
Update SqAlg with (xt, at, yt);

end for

κ = K and the learning rate to α =
√
KT/DT (δ), where

we defineDT (δ) in Lemma 3.3 and give its exact expression
in Eq. 40 in Appendix B.2.

Remark 3.1 (Admissible Experts). It is important to note
that in each round t ∈ [T ], FS-SCB only uses predictions
by admissible experts, i.e., experts i that belong to the set

St :=
{
i ∈ St−1 : 〈φi(xt, a), θ̂it〉 ≤ G+RL

√√√√d log

(
1 + tL2

λid

δ

)
+ L
√
λiS, ∀a ∈ [K]

}
, (6)

with S0 = [M ]. This is the set of experts i whose predic-
tions f i(xt, a;Ht) = 〈φi(xt, a), θ̂it〉, ∀a ∈ [K] are within
a bound defined by (6). When an expert was removed from
the admissible set in a round t, it will remain out for the rest
of the game. We discuss the technical reasons for defining
this set in the proof of Lemma 3.5 in Appendix B.2.

3.1. Regret Analysis of FS-SCB

We state a regret bound for FS-SCB followed by a proof
sketch. The detailed proofs are all reported in Appendix B.

Theorem 3.2. Let Assumption 2.1 hold and the regulariza-
tion parameters λi, exploration parameter κ, and learning
rate α set to the values described above. Then, for any
δ ∈ [0, 1/4), w.p. at least 1− δ, the regret defined by (2) for
FS-SCB is bounded as

RFS-SCB(T ) ≤ O
(√

2T log(2/δ) +RLG

×

√√√√KT (1 + log(M)) max
i∈[M ]

{
λiS2 + 4d log

(
1 + TL2

λid

δ

)})
.
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Proof Sketch. The proof consists of two main steps:

Step 1. We first need to bound the prediction error of the
online regression oracle.
Lemma 3.3. For any δ ∈ (0, 1/4], w.p. at least 1 − δ, we
can bound the prediction error of the regression oracle as

t−1∑
s=1

(
ŷs(xs, as)− 〈φi∗(xs, as), θi∗∗ 〉

)2 ≤ Dt(δ) :=
O
((

1 +R2L2G2 log(M)
)
max
i∈[M ]

{
λiS

2 + 4d log
(1 + TL2

λid

δ

)})
.

The exact definition of Dt(δ) (see Eq. 40 in Appendix B.3)
shows its dependence on the following two terms: 1) an
upper-bound Qt on the prediction error of the true models,

max
i∗

t−1∑
s=1

(
〈φi∗(xs, as), θ̂i∗s 〉 − 〈φi∗(xs, as), θi∗∗ 〉

)2 ≤ Qt, (7)

and 2) the regretRSq(t) of the regression oracle. Thus, the
proof of Lemma 3.3 requires finding expressions for these
quantities, which we derive them in the following lemmas.
Lemma 3.4. For any δ ∈ (0, 1), with probability at least
1 − δ, we may write Qt defined in (7) as (see Eq. 24 in
Appendix B.1 for the exact expression)

Qt = O
(
max
i∈[M ]

{
λiS

2 + 4d log
(
1 +

tL2

λid

)}
+R2 log(1/δ)

)
.

Lemma 3.5. For any δ ∈ (0, 1), with probability at least
1 − δ, we may write the regret of the regression oracle as
(see Eq. 34 in Appendix B.2 for the exact expression)

RSq(t) = O
(
R2L2 log(M)×(

G2 + max
i∈[M ]

{
λiS

2 + d log
(
1 +

tL2

λid

)}
+ log(1/δ)

))
.

Step 2. We then show how the overall regret of FS-SCB is
related to the prediction error of the online regression oracle,
Dt(δ), using the following lemma:
Lemma 3.6. Under the same assumptions as Theorem 3.2,
for any δ ∈ (0, 1/4], with probability at least 1 − δ, the
regret of the FS-SCB algorithm is bounded as

RFS-SCB(T ) ≤
√

2T log(2/δ) +
α

4
DT (δ) +

T∑
t=1

∑
a∈[K]

pt(a)

(
〈φi∗(xt, a), θi∗∗ 〉 − 〈φi∗(xt, a∗t ), θi∗∗ 〉

− α

4

(
ŷt(xt, a)− 〈φi∗(xt, at), θi∗∗ 〉

)2)
. (8)

Finally, we conclude the proof of Theorem 3.2 by bounding
the last term on the RHS of (8) using Lemma B.1 (see
Appendix B.5 for details).

3.2. Related Work (Feature Selection)

The most straightforward solution to the feature selection
problem described in Section 2.2 is to concatenate all mod-
els (feature maps) and build a (M × d)-dimensional feature,
and then search for the sparse reward parameter θ∗ ∈ RMd

with only d non-zero elements. We may then solve the result-
ing LB problem using a sparse LB algorithm (e.g., Abbasi-
Yadkori et al. 2012). This approach would result in a regret
bound of Õ(d

√
MT ), which may not be desirable when the

number of models M is large.

Another approach is to use the EXP4 (or SquareCB) algo-
rithm (Auer et al., 2002b) to obtain a regret that scales
only logarithmically with M . If we partition the lin-
ear space of each model into O(2d) predictors, we will
have the total number of O(M2d) predictors. Predictor
(i, j) ∈ ([M ], [2d]) is associated with a linear map θij ∈ Rd
and recommends the action argmaxa∈A〈φi(a), θij〉. The re-
gret of EXP4 with this set of experts is of Õ(

√
dKT logM).

Although this solution has logarithmic dependence on M , it
is still not desirable, since it is not computationally efficient
(requires handling M2d predictors).

To have computational efficiency, we can use the approach
of Maillard & Munos (2011), but this results in a O(T 2/3)
regret. They designed a model selection strategy using an
EXP4 algorithm with a set of experts that are instances of
the S-EXP3 algorithm of Auer et al. (2002c). The interesting
fact is that each S-EXP3 expert is a learning algorithm and
competes against a set of mappings. The overall regret of
this algorithm is of Õ

(
T 2/3(|S|K logK)1/3

√
logM

)
(see

Bubeck & Cesa-Bianchi 2012, Chapter 4.2). If we apply
this algorithm to our setting, the resulting regret bound is
of Õ(T 2/3d1/3K1/3

√
logM). Although the algorithm is

computationally more efficient than EXP4 and its regret has
logarithmic dependence on M , it is still not desirable as its
dependence on T is of Õ(T 2/3), which is not optimal.

The novelty of our results is that we propose a computation-
ally efficient algorithm, whose regret has better dependence
on M and T , i.e., Õ(

√
KT logM), than all the existing

methods. Our FS-SCB algorithm achieves this by 1) using
a novel instantiation of SquareCB, or more precisely by
constructing a proper full information algorithm (expert),
and 2) using SquareCB with a set of adaptive (learning),
and not static, least-squares experts. Note that SquareCB is
a reduction that turns any online regression oracle into an
algorithm for contextual bandits (Foster & Rakhlin, 2020).

More recently, Papini et al. (2021) studied a feature se-
lection problem where the reward function is linear in all
M feature maps (all models are realizable). Under this
stronger assumption (than ours), they prove a regret bound
that is competitive (up to a logM factor) with that of a lin-
ear bandit algorithm that uses the best feature map. More
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specifically, if one of the feature maps is such that a constant
regret is achievable, the overall model selection strategy also
achieves a constant regret. Although our focus is not on
constant regret, we are able to achieve our results without
requiring all models to be realizable.

4. Parameter Selection Algorithm
We propose a UCB-style algorithm for the parameter selec-
tion setting described in Section 2.3, which we refer to as
parameter selection OFUL (PS-OFUL). We then provide
an upper-bound on its transfer regret and conclude with a
discussion on the existing results related to this setting.

Algorithm 2 contains the pseudo-code of PS-OFUL. The
novel idea in PS-OFUL is the construction of its confidence
set Ct (Eq. 10), which is based on the predictions {ŷs}t−1s=1

by a regression oracle SqAlg. As described in Section 2.4,
SqAlg is a meta algorithm that consists of M learning
algorithms (or experts), and its predictions ŷt are aggregates
of its experts’ predictions f i(φt(at);Ht), ∀i ∈ [M ]. In
PS-OFUL, each expert i ∈ [M ] is a biased regularized
least-squares algorithm with bias µ̂i, i.e., our estimate of the
center of the ith ball (model). Expert i predicts the reward of
the context-action φt(at) as f i(φt(at);Ht) = 〈φt(at), θ̂it〉,
where θ̂it = argminθ ‖Φ>t θ−Yt‖2 +λi‖θ− µ̂i‖2. We may
write θ̂it in closed-form as θ̂it = (V λit )−1Φ>t (Yt − Φtµ̂i) +
µ̂i. In these equations, the reward vector Yt and V λit are
defined as in Section 3; Φt is the feature matrix, whose rows
are φ1(a1), . . . , φt−1(at−1); and λi is the regularization
parameter of expert i. Our analysis in Section 4.1 and
Appendix C suggests to set them to λi = 1

(bi+ci)2
.

The PS-OFUL algorithm takes the feature map φ and models
{B(µ̂i, bi + ci)}Mi=1 as input. At each round t ∈ [T ], it
first constructs a confidence set Ct−1 using the predictions
of the regression oracle {ŷs}t−1s=1. The radius γt(δ) of the
confidence set Ct is defined by two terms: 1) the regret
RSq(t) of the regression oracle SqAlg, defined by (4), and
2) an upper-bound Ut on the prediction error of the true
models (i.e., models that contain θ∗), i.e.,

max
i∈I∗

t−1∑
s=1

(
〈φs(as), θ̂it〉 − 〈φs(as), θ∗〉

)2 ≤ Ut. (9)

The exact values of Ut, RSq(t), and γt(δ) come from our
analysis and have been stated in Eq. 65 in Appendix C.3.
PS-OFUL then computes action at as the one that attains the
maximum optimistic reward w.r.t. the confidence set Ct−1.
Using at, it calculates ŷt = SqAlgt(φt(at);Ht)). As de-
scribed in Section 2.4, SqAlg makes use of Algorithm 3 in
Appendix A to return its prediction ŷt as an aggregate of its
experts’ predictions (see Remark 4.1). Finally, PS-OFUL
takes action at, observes reward yt, and pass the sample

Algorithm 2 Parameter Selection OFUL (PS-OFUL)
Input: Feature Map φ, Confidence Parameter δ, Models
{B(µ̂i, bi + ci)}Mi=1

for t = 1 to T do
Construct the confidence set:

Ct−1 =

{
θ :

t−1∑
s=1

(
ŷs − 〈φs(as), θ〉

)2 ≤ γt−1(δ)

}
(10)

Take action: at = arg maxa∈At maxθ∈Ct−1
〈φt(a), θ〉

Oracle predicts: ŷt = SqAlgt(φt(at);Ht)
Observe reward: yt = 〈φt(at), θ∗〉+ ηt
Update SqAlg with (φt(at), yt);

end for

(φt(at), yt) to SqAlg. This sample is then used within
SqAlg to evaluate its experts and to update their weights.

Remark 4.1 (Admissible Experts). Similar to FS-SCB, in
each round t ∈ [T ], PS-OFUL only uses predictions by
admissible experts, i.e., experts i that belong to the set

St :=
{
i ∈ St−1 : 〈φt(at), θ̂it〉 ≤ G+RL

√√√√d log

(
1 + tL2

λid

δ

)
+ L
√
λi(bi + ci)

}
, (11)

with S0 = [M ]. This is the set of experts i whose prediction
f i(φt(at);Ht) = 〈φt(at), θ̂it〉 is within a bound defined by
(11). When an expert was removed from the admissible
set in a round t, it will remain out for the rest of the game.
We discuss the technical reasons for defining this set in the
proof of Lemma 4.5 in Appendix C.2.

4.1. Regret Analysis of PS-OFUL

We state a regret bound for PS-OFUL followed by a proof
sketch. The detailed proofs are all reported in Appendix C.

Theorem 4.2. Let Assumption 2.2 hold and λi =
1

(bi+ci)2
≥ 1, ∀i ∈ [M ]. Then, for any δ ∈ (0, 1/4], with

probability at least 1− δ, the transfer-regret defined by (3)
of PS-OFUL is bounded as

R(T ) = O
(
dRLmax{1, G}

√
1 + log(M) (12)

×

√
T log

(
1 +

T

d

)
log
(1 + TL2 maxi∈[M](bi+ci)

2

d

δ

))
.

Proof Sketch. The proof consists of two main steps.

Step 1. We first fully specify the confidence set Ct and
prove its validity i.e., P(θ∗ ∈ Ct) ≥ 1− δ, ∀t ∈ [T ].

Theorem 4.3. Under the same assumptions as Theorem 4.2,
the radius γt(δ) of the confidence set Ct is fully specified
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by Eq. 65 in Appendix C.3. Moreover, for any δ ∈ (0, 1/4],
with probability at least 1− δ, the true reward parameter
θ∗ lies in Ct, i.e., P (θ∗ ∈ Ct) ≥ 1− δ.

The definition of γt(δ) in Eq. 65 shows its dependence on
Ut and RSq(t), defined by (9) and (4), respectively. Thus,
the proof of Thm. 4.3 requires finding expressions for these
quantities, which we derive them in the following lemmas.

Lemma 4.4. Setting λi = 1
(bi+ci)2

, ∀i ∈ [M ], with proba-
bility 1− δ, we may write Ut, defined by (9), as (see Eq. 52
in Appendix C.1 for the exact expression)

Ut = O
(
dR2 log

(1 + tL2 maxi∈[M](bi+ci)
2

d

δ

))
.

Lemma 4.5. Setting λi = 1
(bi+ci)2

, ∀i ∈ [M ], with prob-
ability 1− δ, we may writeRSq(t), defined by (4), as (see
Eq. 58 in Appendix C.2 for the exact expression)

RSq(t) = O
(
dR2L2 log(M) log

(1 + tL2 maxi∈[M](bi+ci)
2

d

δ

))
.

Step 2. We then show how the regret is related to the confi-
dence sets using the following lemma:

Lemma 4.6. Under the same assumptions as Theorem 4.2,
for any δ ∈ (0, 1/4], with probability at least 1 − δ, the
regret of PS-OFUL is bounded as

RPS-OFUL(T ) ≤ 2Gd+ (13)

2max{1, G}

√
2dT log

(
1 +

T

d

)
max
d<t≤T

γt(δ).

We conclude the proof of Theorem 4.2 by plugging the
confidence radius γt(δ) computed in Theorem 4.3 (Eq. 65
in Appendix C.3) into the regret bound (13).

4.2. Related Work (Parameter Selection)

Cella et al. (2020) and Moradipari et al. (2022b) studied
meta learning in stochastic linear bandit (LB), where the
agent solves a sequence of LB problems, whose reward
parameters θ∗ are drawn from an unknown distribution ρ
of bounded support in Rd. For each LB task, the agent
is given an estimate of the mean of the distribution ρ and
an upper-bound of its error, and its goal is to minimize
the transfer regret R(T, ρ) = Eθ∗∼ρ

[
E[R(T, θ∗)]

]
. Their

proposed algorithms assume knowing the variance term
Varh = Eθ∗∼ρ

[
‖θ∗ − h‖2

]
, for any h ∈ Rd, in order to

properly set their regularization parameter λ. Thus, the
parameter selection setting studied in our paper can be seen
as an extension of their transfer learning setting to multiple
(M ) models. Moreover, we allow the reward parameter of
the new LB problem θ∗ to be selected arbitrarily from the

M models, and consider a worst-case transfer regret (see
Eq. 3) for our algorithm (instead of a regret in expectation
w.r.t. ρ). Despite these differences, our setting is similar to
theirs as we are also given an estimate of the center of each
model µ̂i, together with an upper-bound on its error ci, plus
the radius bi of each model. Also similar to their results, our
analysis clearly shows the importance of the choice of the
regularization parameters, λi = 1/(bi + ci)

2, for obtaining
a regret bound that only logarithmically depends on the
maximum model uncertainty, i.e., maxi∈[M ](bi + ci)

2.

Our parameter selection setting is also related to latent ban-
dits (Maillard & Mannor, 2014; Hong et al., 2020) in which
identifying the true latent variable is analogous to finding
the correct model. The latest work in this area is by Hong
et al. (2020) in which the agent faces a K-armed LB prob-
lem selected from a set of M known K-dimensional reward
vectors. They proposed UCB and TS algorithms for this set-
ting and showed that their regret (Bayes regret in case of TS)
are bounded as 3M + 2Tε + 2R

√
6MT log T , where the

reward vectors are known up to an error of ε. Comparing to
their results, the regret of PS-OFUL in (12) has a better de-
pendence on the number of models,

√
logM vs. M , and the

model uncertainty,
√

log(maxi∈[M ](bi + ci)2) vs. ε. How-
ever, the number of actionsK does not appear in their bound,
while the bound of PS-OFUL will have a

√
K factor when

applied to K-armed bandit problems. If the objective is to
have a better scaling in K, we can use a different bandit
model selection strategy, called regret balancing (Abbasi-
Yadkori et al., 2020; Pacchiano et al., 2020a), to obtain an
improved regret that scales as min{εT +

√
MT,

√
KMT}

(see Appendix E for details).

In another closely related work, Hong et al. (2022) approach
a similar problem by initializing TS with a prior that is a mix-
ture ofM distributions. They prove a Bayes regret bound for
their algorithm in case of Gaussian mixtures that has

√
M

dependence on the number of models and
√

maxi∈[M ] σ
2
0,i

dependence on the maximum variance of the Gaussian pri-
ors. Both these dependences are logarithmic

√
logM and√

log(maxi∈[M ](bi + ci)2) in the regret of PS-OFUL.

5. Experiments
We evaluate the performances of our FS-SCB and PS-OFUL
algorithms using a synthetic LB problem and image classifi-
cation problems: MNIST (LeCun et al., 1998) and CIFAR-
10 (Krizhevsky et al., 2009). We report the details of our
experimental setup and additional results in Appendix F.

Feature Selection (Synthetic): We first sample the parame-
ter of the linear bandit problem from a d = 50 dimensional
Gaussian with variance 0.01: θ∗ ∼ N (0, 0.01Id). We gen-
erate all feature maps, {φi(a)}Mi=1, by sampling 10, 000
vectors from the Gaussian with mean θ∗ and covariance
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Figure 1. Feature selection in the synthetic LB problem (top) and MNIST (bottom). The regrets are averaged over 100 LB problems.
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Figure 2. Parameter selection in the synthetic LB problem (left) and CIFAR-10 (right). Results are averaged over 50 runs.

0.1Id, i.e., φi(a) ∼ N (θ∗, 0.1Id), for a = 1, . . . , 10, 000.
This implies that allM feature maps have the same bias. We
set φ1(·) to be the true feature map. At each round t ∈ [T ],
the learner is given an action set consist of 10 numbers from
A = {1, 2, . . . , 10, 000}. The reward of each action a is
〈φ1(a), θ?〉+ ηt, where ηt ∼ U [−0.5, 0.5].

Feature Selection (MNIST): We train a convolutional neu-
ral network (CNN) with M different number of epochs on
MNIST data, and use their second layer to the last as our
d = 10-dimensional feature maps {φi}Mi=1. These feature
maps have test accuracy between 20% (worst model) and
97% (best model). We set the best one as true model φi∗ .
For each class s ∈ S = {0, . . . , 9}, we fit a linear model,
given the feature map φi∗ , and obtain parameters {θi∗s }9s=0.
At the beginning of each LB task, we select a class s∗ ∈ S
uniformly at random and set its parameter to θi∗s∗ . At each
round t ∈ [T ], the learner is given an action set consists
of 10 images, one from class s∗ and the rest randomly se-
lected from the other classes. The reward of each action a is
defined as 〈φi∗(a), θi∗s∗〉+ηt ∈ [0, 1], where φi∗(a) is the ap-
plication of the feature map φi∗ to the image corresponding
to action a and ηt ∼ U [−0.5, 0.5] is the noise.

In Figure 1, we compare the regret of our FS-SCB algorithm
for different number of modelsM with a regret balancing al-

gorithm that uses SquareCB baselines (RB-SCB), and three
SquareCB algorithms that use the best (Oracle), second-
best (with test accuracy 84% for MNIST), and worst feature
maps. The results in Figure 1 show that 1) FS-SCB always
performs between the best and second-best experts, 2) the
regret of FS-SCB that scales as

√
logM is close to RB-SCB

(scales as
√
M ) for small M , but gets much better as M

grows, and 3) RB-SCB has much higher variance than the
other algorithms in MNIST.

Parameter Selection (Synthetic): We first sample the cen-
ter of M = 10 balls from a d = 20-dimensional Gaus-
sian, i.e., {µi}Mi=1 ∼ N (0, Id), and set their radii to
bi = b, ∀i ∈ [M ]. At the beginning of each LB task, we se-
lect a model i∗ ∈ [M ] uniformly at random, and then sample
the problem’s parameter from its ball, i.e., θ∗ ∼ B(µi∗ , bi∗).
The action set in each round t ∈ [T ] consists of 10 vec-
tors {φt(aj)}10j=1 ∼ N (0, 0.01Id), and the reward of the
selected action at is defined as 〈φt(at), θ∗〉 + ηt, ηt ∼
U [−0.5, 0.5]. Figure 2 (left) compares the regret of our
PS-OFUL algorithm with OFUL (Abbasi-Yadkori et al.,
2011) for different sizes of the balls b ∈ {0,

√
d, 2
√
d}. We

run OFUL with the upper-bounds ‖θ∗‖2 ≤ S = 10 and
S = maxi(µi + bi) on the reward parameter. Note that the
second bound is tighter and shows the best performance of
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Figure 3. Parameter selection in CIFAR-10 with models less accurate than those in Figure 2 (right). The results are averaged over 50 runs.

OFUL. Our results indicate that the regret of PS-OFUL is
better than OFUL, and gets closer to it as we increase the
size of the balls from b = 0 to b = 2

√
d ≈ 9. This clearly

shows the potential advantage of transfer (PS-OFUL) over
individual (OFUL) learning.

Parameter Selection (CIFAR-10): We modify the
EfficientNetV2-S network (Tan & Le, 2021) by adding a
layer of d = 12 neurons before the last layer and fine-tuning
it on CIFAR-10 dataset. We then select this d-dimensional
layer as our feature map φ. To define our M models (balls),
we sample 100M datasets of size 500. For each dataset, we
randomly select a class s∗ ∈ [M ], assign reward 1 to images
from s∗ and 0 to other images, and fit a linear model to it
to obtain a parameter vector. Finally, we fit a Gaussian mix-
ture model with M components to these 100M parameter
vectors and use the means and covariances of the resulting
clusters as the center and radii of our M models (balls). At
the beginning of each LB task, we select a class s∗ ∈ [M ]
uniformly at random. In each round t ∈ [T ], the learner is
given an action set consists of 10 images, one from class
s∗ and the rest randomly selected from the other classes.
The learner receives a reward from Ber(0.9), if it selects the
image from class s∗, and from Ber(0.1), otherwise.

In Figure 2 (right), we compare the mean reward of PS-
OFUL for different values of M with a regret balancing
algorithm that uses OFUL baselines (RB-OFUL) (Abbasi-
Yadkori et al., 2020), OFUL (individual learning), and BIAS-
OFUL (Cella et al., 2020) with bias being the center of
the true model (Oracle). The results show 1) the good
performance of PS-OFUL, 2) the performance of PS-OFUL
gets better than RB-OFUL as M grows (

√
logM vs.

√
M

scaling), 3) the large variance of RB-OFUL, especially in
comparison to PS-OFUL, and finally 4) the advantage of
transfer (PS-OFUL) over individual (OFUL) learning.

In order to show the impact of the model accuracy (the
accuracy of the center of the balls and their radii) on the
performance of the algorithms, we defined a less accurate
set of M models (balls) using 10M datasets of size 50 (as
opposed to 100M datasets of size 500 used in the results

reported in Figure 2 (right)). In Figure 3, we compare the
mean reward of PS-OFUL for different number of models
M with RB-OFUL, OFUL, and BIAS-OFUL. The results
indicate that with decreasing in the accuracy of the models,
the performance of PS-OFUL and RB-OFUL get closer to
that for OFUL.

6. Conclusions
We studied two model selection settings in LB, where the
mean reward is linear in at least one of M models (feature
selection), and where the reward parameter is arbitrarily
selected from M misspecified models (parameter selec-
tion). We derived computationally efficient algorithms in
these settings that are based on reductions from bandits to
full-information problems, and proved regret bounds with
desirable dependence on the horizon and number of models.
An interesting future direction is to extend our results to the
meta learning and learning-to-learn setting, where the agent
starts with M models, and instead of solving a single LB
problem, has to solve N of them one after another.
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A. Sequential Prediction Algorithm
The sequential prediction algorithm SqAlg uses the following algorithm from (Haussler et al., 1998) (also see Cesa-Bianchi
& Lugosi 2006, Chapter 3) to aggregate its experts’ predictions. Algorithm 3 takes the observations yt and experts’
predictions f it (Ht) that are bounded in the known range [β, β + `] as input. It first scales these input to the range [0, 1] and
uses its current weights for the experts to generate its own prediction ŷt.

The performance of SqAlg is evaluated as the accuracy (in terms of square loss) of its prediction w.r.t. the accuracy of the
prediction by the best expert in the set, i.e.,

T∑
t=1

(ŷt − yt)2 − min
i∈[M ]

T∑
t=1

(f it (Ht)− yt)2 ≤ RSq(T ). (14)

We call this the regret of SqAlg and denote it byRSq(T ). Haussler et al. (1998) prove the following bound forRSq(T ),
which we use in the analysis of our algorithms.

Algorithm 3 Sequential Prediction with Expert Advice
Input: ` and β (experts’ predictions f it (Ht) are bounded in the known range [β, β + `])
Initialization: Set the weight w1,i = 1 for all experts i ∈ [M ]
for t = 1 to T do

Receive predictions f it (Ht) by experts i ∈ St−1
Remove experts whose predictions are out of bound and construct the new set of admissible experts St (see Remarks 3.1
and 4.1)
Scale experts’ predictions hi,t =

fit (Ht)−β
` , ∀i ∈ St

Set vt,i =
wt,i
W , ∀i ∈ St, where W =

∑
i∈St wt,i

Prediction: Compute:

∆(0) =
−1

2
log

(∑
i∈St

vt,ie
−2h2

i,t

)
, ∆(1) =

−1

2
log

(∑
i∈St

vt,ie
−2(1−hi,t)2

)

Predict a value ŷ′t that satisfies the following conditions:

(ŷ′t)
2 ≤ ∆(0) , (1− ŷ′t)2 ≤ ∆(1).

Update: Observing reward yt, scale it as y′t = yt−a
` , and update the experts’ weights

wt+1,i = wt,ie
−2(y′t−hi,t)

2

(15)

Return prediction ŷt = β + `ŷ′t
end for

Proposition A.1 (Theorem 4.2 in Haussler et al. 1998). For any arbitrary sequence
{(
{f it (Ht)}Mi=1, ŷt, yt

)}T
t=1

in which

the experts’ predictions
{
{f it (Ht)}Mi=1

}T
t=1

and observations {yt}Tt=1 are all bounded in [β, β + `], the regret defined
by (14) of Algorithm 3 is bounded as

RSq(T ) ≤ 2`2 logM.

Here we use the fact that |St| ≤M, ∀t ∈ [T ].
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B. Proofs of Section 3
In this section, we first provide a brief overview for the steps of our proof. Then, we provide the proofs of lemmas used in
Section 3.

The performance analysis of the FS-SCB algorithm requires two steps. First, we control the sum of the prediction error of
the agent. Second, we show how the regret is related to the prediction error of the agent, and then we bound the regret.

Step 1. To control the sum of the prediction error of the agent Dt, we need to find two upper bounds: 1) an upper bound on
the prediction error of the true model i∗ whose identity is unknown to the agent Qt; 2) an upper bound on the regret caused
by the online regression oracleRSq

First, in Lemma 3.4, we bound the sum of the prediction error of the true model as

t−1∑
s=1

(
〈φi∗(xs, as), θ̂i∗s 〉 − 〈φi∗(xs, as), θi∗∗ 〉

)2
≤ Qt (16)

where

Qt = 1 + 2

(
max
i∈[M ]

{
λiS

2 + 4d log
(
1 +

tL2

λid

)})
+ 32R2 log

R√8 +
√

1 + maxi∈[M ]

{
λiS2 + 4d log

(
1 + tL2

λid

)}
δ

 .

Next, in Lemma 3.5, we provide a high probability upper-bound on the regret caused by the online regression oracle as

RSq(t) ≤ 8(logM)R2L2

(
G2 + max

i∈[M ]
{λiS2 + d log

(
1 +

tL2

λid

)
}+ log(1/δ)

)
.

Then, in Lemma 3.3, we show the following upper bound on the sum of prediction error of the agent:

Dt(δ) ≤ 1 + 2RSq(t) + 2Qt + 4R

√
2(1 +Qt) log

(√1 +Qt
δ

)

+ 32R2 log

R
√

8 +

√
1 +RSq(t) +Qt + 2R

√
2(1 +Qt) log

(√
1+Qt
δ

)
δ

 . (17)

Step 2. First in Lemma 3.6, we show how the regret is related to the prediction error of the agent using the Azuma’s
inequality, i.e.,

RFS-SCB(T ) ≤
√

2T log(2/δ) + αDT (δ) (18)

+

T∑
t=1

∑
a∈[K]

pt(xt, a)
(
〈φi∗(xt, a∗t ), θi∗∗ 〉 − 〈φi∗(xt, a), θi∗∗ 〉 −

α

4

(
ŷt(xt, a)− 〈φi∗(xt, a), θi∗∗ 〉

)2)
.

Then in Appendix B.5, we put everything together and complete the proof.

B.1. Proof of Lemma 3.4

At each round t, each expert i∗ ∈ I∗ estimates its reward parameter as

θ̂i∗t = arg min
θ

∥∥(Φi∗t )>θ − Yt
∥∥2
2

+ λi∗ ‖θ‖22 . (19)

Let V λi∗t = λi∗I +
∑t−1
s=1 φ

i∗(xs, as)φ
i∗(xs, as)

>. From the standard least-squares analysis, we have

t−1∑
s=1

(
〈φi∗(xs, as), θ̂i∗s 〉 − ys

)2 − t−1∑
s=1

(
〈φi∗(xs, as), θi∗∗ 〉 − ys

)2 ≤ λi∗ ∥∥θi∗∗ ∥∥22 + 2

t−1∑
s=1

〈
φi∗(xs, as)

>
, (V

λi∗
s )−1φi∗(xs, as)

〉
.



Feature and Parameter Selection in Stochastic Linear Bandits

Therefore, we can write:

t−1∑
s=1

(
〈φi∗(xs, as), θ̂i∗s − θi∗∗ 〉

)2 ≤ λi∗ ∥∥θi∗∗ ∥∥22 + 2 log

(
det(V

λi∗
t )

det(λi∗I)

)
+ 2

t−1∑
s=1

ηs
(
〈φi∗(xs, as), θ̂i∗s − θi∗∗ 〉

)
. (20)

The last term on the RHS of (20) can be bounded using Proposition D.1 in Appendix D as∣∣∣∣∣
t−1∑
s=1

ηs
(
〈φi∗(xs, as), θ̂i∗s − θi∗∗ 〉

)∣∣∣∣∣ ≤
R

√√√√2

(
1 +

t−1∑
s=1

(
〈φi∗(xs, as), θ̂i∗s − θi∗∗ 〉

)2)
log

(
1 +

∑t−1
s=1

(
〈φi∗(xs, as), θ̂i∗s − θi∗∗ 〉

)2
δ

)
. (21)

Define u =

√
1 +

∑t−1
k=1

(
〈φi∗(xk, ak), θ̂i∗k − θi∗∗ 〉

)2
, v = 1 + λi∗

∥∥∥θλi∗∗ ∥∥∥2
2

+ 2 log
(

det(V i∗t )
det(λi∗I)

)
, and w = 2R

√
2 log(s/δ).

It is easy to see that (21) can be written in the form of u2 ≤ v + uq. Then, by applying Lemma D.5 in Appendix D, we may
write u ≤ √v + w. Substituting for w, we can get u ≤ √v + 2R

√
2 log(u/δ). Then, by Lemma D.6 in Appendix D, for

δ ∈ (0, 1/4], we have

u ≤ √v + 4R

√√√√log

(
2
√

2R+
√
v

δ

)
,

which using the inequality (a+ b)2 ≤ 2a2 + 2b2, for any a and b, we can write it as

u2 ≤ 2v + 32R2 log

(
2
√

2R+
√
v

δ

)
.

Finally, we substitute u and v, and subtract 1 from both sides, and for δ ∈ (0, 1/4], we obtain

t−1∑
s=1

(
〈φi∗(xs, as), θ̂i∗s − θi∗∗ 〉

)2 ≤ 1 + 2λi∗
∥∥θi∗∗ ∥∥22 + 4 log

(
det(V

λi∗
t )

det(λi∗I)

)

+ 32R2 log


R
√

8 +

√
1 + λ

∥∥θi∗∗ ∥∥22 + 2 log

(
det(V

λi∗
t )

det(λi∗I)

)
δ

 . (22)

We know that
∥∥θi∗∗ ∥∥22 ≤ S2. Moreover, by Lemma D.3 in Appendix D, we can bound the term log

(
det(V

λi∗
t )

det(λi∗I)

)
. Replacing

these in (22), we may write

t−1∑
s=1

(
〈φi∗(xs, as), θ̂i∗s − θi∗∗ 〉

)2 ≤ 1 + 2λi∗S
2 + 8d log

(
1 +

tL2

λi∗d

)

+ 32R2 log

R
√

8 +

√
1 + λi∗S

2 + 4d log
(

1 + tL2

λi∗d

)
δ

 . (23)
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Since the algorithm does not know the identity of i∗, we derive an expression for Qt, and conclude the proof by replacing i∗
with the maximum over all i ∈ [M ] in (23) as

t−1∑
s=1

(
〈φi∗(xs, as), θ̂i∗s − θi∗∗ 〉

)2 ≤ 1 + 2

(
max
i∈[M ]

{
λiS

2 + 4d log
(
1 +

tL2

λid

)})

+ 32R2 log

R√8 +
√

1 + maxi∈[M ]

{
λiS2 + 4d log

(
1 + tL2

λid

)}
δ

 := Qt. (24)

B.2. Proof of Lemma 3.5

To bound the regretRSq(t) of the regression oracle SqAlg, similar to the proof of Lemma 4.5 in Appendix C.2, we show the
reward signals and the experts’ predictions are bounded with high probability. Then, we use Proposition A.1 in Appendix A
to complete the proof.

From (53), according to Assumption 2.1, we have 〈φi∗(x, a), θi∗∗ 〉 ≤ LS, for all x ∈ X , a ∈ [k], and i ∈ [M ]. Hence, with
probability at least 1− δ, we have

yt ∈
[
−
(
G+R

√
2 log(2/δ)

)
,
(
G+R

√
2 log(2/δ)

)]
. (25)

Next we bound the predictions of the experts that FS-SCB considers in its prediction. To do so, we first show an upper
bound on the prediction of the any true model i∗. In particular, we can write for t ∈ [T ] and ∀a ∈ [K]:∣∣∣〈φi∗(xt, at), θ̂i∗t 〉∣∣∣ =

∣∣∣〈φi∗(xt, at), θi∗∗ 〉+ 〈φi∗(xt, at), θ̂i∗t − θi∗∗ 〉
∣∣∣

(a)
≤
∣∣〈φi∗(xt, at), θi∗∗ 〉∣∣+

∣∣∣〈φi∗(xt, at), θ̂i∗t − θi∗∗ 〉∣∣∣
(b)
≤ G+

∥∥φi∗(xt, at)∥∥
(V

λi∗
t )−1

(∥∥Φi∗t ηt
∥∥
(V

λi∗
t )−1

+
√
λi∗S

)
, (26)

(a) It results from a triangular inequality. (b) This is because of the Assumption 2.1, and the fact that the true model is
linearly realizable, we can apply Theorem 2 in Abbasi-Yadkori et al. (2011). Then, we use Theorem 1 in Abbasi-Yadkori
et al. (2011) and standard matrix analysis together with our assumption that

∥∥φi∗(xt, at)∥∥ ≤ L, and bound the terms on the
RHS of (26) with high probability as

∥∥Φi∗t ηt
∥∥
(V

λi∗
t )−1

≤ R

√√√√√2 log


√

det(V
λi∗
t )

δ
√

det(λi∗I)

, (27)

and ∥∥φi∗(xt, at)∥∥
(V

λi∗
t )−1

≤
∥∥φi∗(xt, at)∥∥√
λmin(V

λi∗
t )

≤ L√
λi∗
≤ L, (28)

where λmin(V
λi∗
t ) is the smallest eigenvalue of the matrix V λi∗t . In the last step of (28), we use the fact that λi ≥ 1, ∀i ∈ [M ].

Putting Eqs. 26, 27, and 28 together, with probability at least 1− δ, we have

∣∣∣〈φi∗(xt, at), θ̂i∗t 〉∣∣∣ ≤ G+RL

√√√√√2 log


√

det(V
λi∗
t )

δ
√

det(λi∗I)

+ L
√
λiS. (29)

Using Lemma D.3 in Appendix D, we may write (29) as

∣∣∣〈φi∗(xt, at), θ̂i∗t 〉∣∣∣ ≤ G+RL

√√√√d log

(
1 + tL2

λi∗d

δ

)
+ L

√
λi∗S. (30)
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FS-SCB employees this idea that at any time step t ∈ [T ], any potentially true model (i.e., linearly realizable) should have a
similar bound on its prediction. To do so, the set of admissible experts, St, only considers experts that have the following
bound on their prediction at each time t ∈ [T ] and ∀a ∈ [K] as:

∣∣∣〈φi(xt, at), θ̂it〉∣∣∣ ≤ G+RL

√√√√d log

(
1 + tL2

λid

δ

)
+ L

√
λiS. (31)

If at some time step t, this bound does not hold for any expert i, then the algorithm simply eliminates that expert from the
set of admissible experts, since that model is not a true model (i.e., the reward is not in the linear span of the prediction of
that expert), and that expert will remain out for the rest of the game. Then, we may bound the range of the prediction of each
expert i ∈ St at round t ∈ [T ] as

〈φi(xt, at), θ̂it〉 ∈
[
−
(
G+RL

√
d log

(1 + tL2

λid

δ

)
+ L

√
λiS

)
,

(
G+RL

√
d log

(1 + tL2

λid

δ

)
+ L

√
λiS

)]
. (32)

Putting together (25) and (32), we conclude that for all rounds t ∈ [T ] and experts i ∈ St, with probability at least 1− δ, the
reward yt and the expert’s predictions f it (Ht) are in the range [β, β + `] for

β = −
(
G+RL

√
d log

(1 + tL2

λid

δ

)
+ L

√
λiS

)
, ` = 2

(
G+RL

√
d log

(1 + tL2

λid

δ

)
+ L

√
λiS

)
. (33)

Using Proposition A.1 in Appendix A with the bound on the observations and predictions in (33), with probability at least
1− δ, we obtain the following regret bound for SqAlg:

RSq(t) = 8R2L2 log(M)

(
G2 + max

i∈[M ]

{
λiS

2 + d log
(

1 +
tL2

λid

)}
+ log(1/δ)

)
, (34)

in which we use the fact that for a, b > 0, (a+ b)2 ≤ 2a2 + 2b2. This concludes our proof.

B.3. Proof of Lemma 3.3

Here, we bound the sum of the square loss of the oracle predictions, i.e.,

t−1∑
s=1

(
ŷs(xs, as)− 〈φi∗(xs, as), θi∗∗ 〉

)2 ≤ Dt(δ). (35)

We know that yt = 〈φi∗(xt, at), θi∗∗ 〉+ ηt. Hence we can write(
ŷt(xt, at)− yt

)2 − (〈φi∗(xt, at), θ̂i∗t 〉 − yt)2 =(
ŷt(xt, at)− 〈φi∗(xt, at), θi∗∗ 〉 − ηt

)2 − (〈φi∗(xt, at), θ̂i∗t 〉 − 〈φi∗(xt, at), θi∗∗ 〉 − ηt)2
=
(
ŷt(xt, at)− 〈φi∗(xt, at), θi∗∗ 〉

)2 − (〈φi∗(xt, at), θ̂i∗t 〉 − 〈φi∗(xt, at), θi∗∗ 〉)2
+ 2ηt

(
〈φi∗(xt, at), θ̂i∗t 〉 − ŷt(xt, at)

)
=
(
ŷt(xt, at)− 〈φi∗(xt, at), θi∗∗ 〉

)2 − (〈φi∗(xt, at), θ̂i∗t 〉 − 〈φi∗(xt, at), θi∗∗ 〉)2
+ 2ηt

(
〈φi∗(xt, at), θ̂i∗t 〉 − 〈φi∗(xt, at), θi∗∗ 〉

)
+ 2ηt

(
〈φi∗(xt, at), θi∗∗ 〉 − ŷt(xt, at)

)
. (36)

Then, from Proposition D.1 in Appendix D, with probability at least 1− δ, we have∣∣∣∣∣
t−1∑
s=1

ηs
(
〈φi∗(xs, as), θ̂i∗s − θi∗∗ 〉

)∣∣∣∣∣ ≤
R

√√√√√2

(
1 +

t−1∑
s=1

(
〈φi∗(xs, as), θ̂i∗s − θi∗∗ 〉

)2)
log


√

1 +
∑t−1
s=1

(
〈φi∗(xs, as), θ̂i∗s − θi∗∗ 〉

)2
δ

, (37)
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and ∣∣∣∣∣
t−1∑
s=1

ηs
(
〈φi∗(xs, as), θi∗∗ 〉 − ŷs(xs, as)

)∣∣∣∣∣ ≤
R

√√√√√2

(
1 +

t−1∑
s=1

(
〈φi∗(xs, as), θi∗∗ 〉 − ŷs

)2)
log


√

1 +
∑t−1
s=1

(
〈φi∗(xs, as), θi∗∗ 〉 − ŷs

)2
δ

. (38)

Using (37) and (38), the upper-boundRSq(t) from (34) in Appendix B.2, and the upper-bound Qt on the square error of the
prediction of the true model in (24) in Appendix B.1, we may write (36) as

t−1∑
s=1

(
ŷs(xs, as)− 〈φi∗(xs, as), θi∗∗ 〉

)2 ≤ RSq(t) +Qt + 2R

√
2(1 +Qt) log

(√
1 +Qt
δ

)

+ 2R

√√√√√2
(

1 +

t−1∑
s=1

(
〈φi∗(xs, as), θi∗∗ 〉 − ŷs(xs, as)

)2 )
log


√

1 +
∑t−1
s=1

(
〈φi∗(as), θi∗∗ 〉 − ŷs(as)

)2
δ

. (39)

Let u =

√
1 +

∑t−1
k=1

(
ŷk(xk, ak)− 〈φi∗(xk, ak), θi∗∗ 〉

)2
, v = 1 + RSq(t) + Qt + 2R

√
2(1 +Qt) log(

√
1+Qt
δ ), and

q = 2R
√

2 log(s/δ). Then, following the same machinery as the one in the proof of Lemma 3.4 in Section B.1, and with
the use of Lemmas D.5 and D.6, for δ ∈ (0, 1/4], with probability at least 1− δ, we have

t−1∑
s=1

(
ŷs(xs, as)− 〈φi∗(xs, as), θi∗∗ 〉

)2 ≤ 1 + 2RSq(t) + 2Qt + 4R

√
2(1 +Qt) log

(√
1 +Qt
δ

)

+ 32R2 log


R
√

8 +

√
1 +RSq(t) +Qt + 2R

√
2(1 +Qt) log

(√
1+Qt
δ

)
δ

 := Dt(δ), (40)

where

Qt = 1 + 2

(
max
i∈[M ]

{
λiS

2 + 4d log

(
1 +

tL2

λid

)})
+ 32R2 log

R
√

8 +

√
1 + maxi∈[M ]

{
λiS2 + 4d log

(
1 + tL2

λid

)}
δ

 ,

and

RSq(t) ≤ 8R2L2 log(M)

(
G2 + max

i∈[M ]

{
λiS

2 + d log

(
1 +

tL2

λid

)}
+ log(1/δ)

)
.

B.4. Proof of Lemma 3.6

The inequality can be obtained using Azuma’s inequality and following similar steps as in Lemma 2 of (Foster & Rakhlin,
2020). We may write the regret as

RFS-SCB(T ) =

T∑
t=1

(
〈φi∗(xt, a∗t ), θi∗∗ 〉 − 〈φi∗(xt, at), θi∗∗ 〉 −

α

4

(
ŷt(xt, at)− 〈φi∗(xt, at), θi∗∗ 〉

)2)
+
α

4

T∑
t=1

(
ŷt(xt, at)− 〈φi∗(xt, at), θi∗∗ 〉

)2
. (41)
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The last term on the RHS of (41) is bounded with Dt(δ) in (40) from the result of Lemma 3.3 in Appendix B.3. Define
filtration Ft−1 = σ

(
(x1, a1, y1), . . . , (xt−1, at−1, yt−1)

)
. On the RHS of (41), the action at is random. We can use the

Azuma’s inequality and with probability at least 1− δ, upper-bound the first term on the RHS of (41) with its expectation
counterparts using the probability distribution pt as

RFS-SCB(T ) ≤
√

2T log(2/δ) +
α

4
DT (42)

+

T∑
t=1

∑
a∈[K]

pt(a)
(
〈φi∗(xt, a∗t ), θi∗∗ 〉 − 〈φi∗(xt, a), θi∗∗ 〉 −

α

4

(
ŷt(xt, a)− 〈φi∗(xt, at), θi∗∗ 〉

)2)
.

B.5. Proof of Theorem 3.2

We first state the following lemma from (Foster & Rakhlin, 2020) to bound the first term on the RHS of (43).

Lemma B.1 (Lemma 3 in (Foster & Rakhlin, 2020)). Under Assumption 2.1, for the probability distribution pt ∈ ∆K

defined in the FS-SCB algorithm, we may write∑
a∈[K]

pt(a)
(
〈φi∗(xt, a∗t ), θi∗∗ 〉 − 〈φi∗(xt, a), θi∗∗ 〉 −

α

4

(
ŷt(xt, a)− 〈φi∗(xt, at), θi∗∗ 〉

)2) ≤ 2K

α
.

Putting everything together, with the choice of α =
√
KT/DT (δ), with probability at least 1−δ, we can show the following

upper-bound on the regret of the FS-SCB algorithm:

RFS-SCB(T ) ≤ 3
√
KTDT (δ) +

√
2T log(2/δ) (43)

Here the upper-bound is of order

RFS-SCB(T ) ≤ O
(√

2T log(2/δ) +RLG

√√√√KT (1 + log(M)) max
i∈[M ]

{
λiS2 + 4d log

(
1 + TL2

λid

δ

)})
.
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C. Proofs of Section 4
The regret analysis of the PS-OFUL algorithms requires two steps. First, in Theorem 4.3, we show that the confidence set Ct
is valid at each round t, i.e., for any t, δ > 0, it includes the reward parameter θ∗ with probability at least 1− δ. Second, we
show how the regret is related to the valid confidence set, and then using Lemmas D.2 and D.3 complete the proof.

Step 1. The key idea for showing the validity of the confidence set Ct requires controlling the square prediction error of the
online regression oracle ŷt, i.e., upper-bounding γt. In Appendix C.3, we show that we can relate this distance to the sum of
two terms: γt ≤ O (Ut +RSq(t)), and then show how we can bound each of them.

1) Bounding Ut: Lemma 4.4 shows the worst-case upper-bound on the square error of the prediction of true model i∗, given
that the agent does not know the identity of the true model:

t∑
s=1

〈φs(as), θ̂i∗s − θ∗〉2 ≤ Ut (44)

where

Ut ≤ 3 + 8d log

(
1 +

tL2 maxi∈[M ](bi + ci)
2

d

)
+ 32R2 log(1/δ) (45)

Proof. The proof is provided in Appendix C.1.

2) BoundingRSq(t): In Lemma 4.5, we prove an upper-bound on the regret caused by the prediction oracle SqAlg, given
our proposed expert predictions as (see Appendix C.2 for details).

RSq(t) ≤ 8(G+ L)2 log(M) + 8R2L2d log(M) log(1/δ) + 8R2L2d log(M) log

(
1 +

tL2 maxi∈[M ](bi + ci)
2

d

)
Putting these together, in Appendix C.3, we prove Theorem 4.3 that shows the validity of the confidence set Ct.
Step 2. In Appendix C.4, we first show how regret is related to the confidence set. In particular, we show that given the
validity of of the confidence set Ct, i.e., for any δ ∈ (0, 1/4], with probability at least 1 − δ, θ∗ ∈ Ct, we can bound the
regret as

RPS-OFUL(T ) ≤ 2Gd+ 2 max{1, G}
√

2dT log

(
1 +

T

d

)
max
d<t≤T

γt(δ).

Then, in Appendix C.5, we set λi = 1
(bi+ci)2

, for each i ∈ [M ], and use Lemmas D.2 and D.3 to complete the proof of
Theorem 4.2. Here we prove a regret upper-bound of order

O

dRLmax{1, G}
√

1 + log(M)×

√√√√T log

(
1 +

T

d

)
log

(
1 +

TL2 maxi∈[M](bi+ci)2

d

δ

) .

C.1. Proof of Lemma 4.4

At each round s ∈ [T ], each expert i∗ ∈ I∗ estimates its reward parameter as

θ̂i∗s = arg min
θ

∥∥Φ>s θ − Ys
∥∥2 + λi∗ ‖θ − µ̂i∗‖2 ,

which is the output of a Follow-The-Regularized-Leader (FTRL) algorithm with quadratic regularizer ‖θ − µ̂i∗‖2. Following
the standard FTRL analysis of online regression (see e.g., Cesa-Bianchi & Lugosi 2006, Chapter 11), we have

t∑
s=1

(〈φs(as), θ̂i∗s 〉 − ys)2 −
t∑

s=1

(〈φs(as), θ∗〉 − ys)2 ≤ λi∗ ‖θ∗ − µ̂i∗‖2 + 2

t∑
s=1

〈φs(as), (V λi∗s )−1φs(as)〉, (46)
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where V λi∗t = λi∗I +
∑t−1
s=1 φs(as)φs(as)

>. We may write (46) as

t∑
s=1

〈φs(as), θ̂i∗s − θ∗〉2 ≤ λi∗ ‖θ∗ − µ̂i∗‖2 + 2 log

(
det(V

λi∗
t )

det(λi∗I)

)
+ 2

t∑
s=1

ηs〈φs(as), θ̂i∗s − θ∗〉. (47)

Using Proposition D.1 in Appendix D, we may bound the last term on the RHS of (47) as∣∣∣∣∣
t∑

s=1

ηs〈φs(as), θ̂i∗s − θ∗〉
∣∣∣∣∣ ≤ R

√√√√2

(
1 +

t∑
s=1

〈φs(as), θ̂i∗s − θ∗〉2
)

log

(
1 +

∑t
s=1〈φs(as), θ̂i∗s − θ∗〉2

δ

)
. (48)

It is easy to see that (47) can be written in the form u2 ≤ v + uw, where u =
√

1 +
∑t
s=1〈φs(as), θ̂i∗s − θ∗〉2, v =

1 +λi‖θ∗− µ̂i∗‖2 + 2 log

(
det(V

λi∗
t )

det(λi∗I)

)
, and w = 2R

√
2 log(u/δ). Then, by applying Lemma D.5 in Appendix D, we may

write u ≤ √v + w. Substituting for w, we can get u ≤ √v + 2R
√

2 log(u/δ). Then, by Lemma D.6 in Appendix D, for
δ ∈ (0, 1/4], we have

u ≤ √v + 4R

√√√√log

(
2
√

2R+
√
v

δ

)
,

which using the inequality (a+ b)2 ≤ 2a2 + 2b2, for any a and b, we can write it as

u2 ≤ 2v + 32R2 log

(
2
√

2R+
√
v

δ

)
.

Finally, we substitute u and v, and subtract 1 from both sides, and for δ ∈ (0, 1/4], we obtain

t∑
s=1

〈φs(as), θ̂i∗s − θ∗〉2 ≤ 1 + 2λi∗ ‖θ∗ − µ̂i∗‖2 + 4 log

(
det(V

λi∗
t )

det(λi∗I)

)

+ 32R2 log


2
√

2R+

√
1 + λi∗ ‖θ∗ − µ̂i∗‖2 + 2 log

(
det(V

λi∗
t )

det(λi∗I)

)
δ

 .

(49)

We know ‖θ∗ − µ̂i∗‖2 ≤ (bi∗ + ci∗)
2. Moreover, by Lemma D.3 in Appendix D, we can bound the term log

(
det(V

λi∗
t )

det(λi∗I)

)
.

Replacing these terms in (49), we have

t∑
s=1

〈φs(as), θ̂i∗s − θ∗〉2 ≤ 1 + 2λi∗(bi∗ + ci∗)
2 + 8d log

(
1 +

tL2

dλi∗

)

+ 32R2 log

2
√

2R+
√

1 + λi∗(bi∗ + ci∗)
2 + 4d log(1 + tL2

dλi∗
)

δ

 .

(50)

Setting λi∗ = 1
(bi∗+ci∗ )

2 , as used by the PS-OFUL algorithm, we obtain

t∑
s=1

〈φs(as), θ̂i∗s − θ∗〉2 ≤ 3 + 8d log

(
1 +

tL2(bi∗ + ci∗)
2

d

)

+ 32R2 log

2
√

2R+
√

2 + 4d log
(
1 +

tL2(bi∗+ci∗ )
2

d

)
δ

 .

(51)
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Since the algorithm does not know the identity of i∗, we derive an expression for Ut and conclude the proof by replacing i∗
with the maximum over all i ∈ [M ] in (51), as

t∑
s=1

〈φs(as), θ̂i∗s − θ∗〉2 ≤ 3 + 8d log

(
1 +

tL2 maxi∈[M ](bi + ci)
2

d

)

+ 32R2 log

2
√

2R+

√
2 + 4d log

(
1 +

tL2 maxi∈[M](bi+ci)2

d

)
δ

 := Ut.

(52)

C.2. Proof of Lemma 4.5

To obtain a high probability bound on the regretRSq(t) of the regression oracle SqAlg, we first show that the inputs to the
regression oracle, i.e., reward signals yt = φt(at) + ηt and the experts’ predictions f it (Ht) = 〈φt(at), θ̂it〉 are all bounded
with high probability. We then use Proposition A.1 in Appendix A to complete the proof.

Since each noise ηt is R-sub-Gaussian, from Lemma D.4 in Appendix D, with probability at least 1 − δ, we have that
|ηt| ≤ R

√
2 log(2/δ). We also have from Assumption 2.2 that for each context and each action a ∈ ⋃Tt=1At, their mean

reward |〈φt(a), θ∗〉| ≤ G. Thus, by the triangular inequality, with probability at least 1− δ, we obtain

yt ∈
[
−
(
G+R

√
2 log(2/δ)

)
,
(
G+R

√
2 log(2/δ)

)]
. (53)

Next we bound the prediction of the experts that PS-OFUL considers in its prediction. To do so, we employ the same idea as
we mentioned in the proof of Lemma 3.5 in Appendix B.2, where we first show an upper bound on the prediction of the any
true model i∗. In particular, we can write for any time t ∈ [T ]:∣∣∣〈φt(at), θ̂i∗t 〉∣∣∣ =

∣∣∣〈φt(at), θ∗〉+ 〈φt(at), θ̂i∗t − θ∗〉
∣∣∣

(a)
≤ |〈φt(at), θ∗〉|+

∣∣∣〈φt(at), θ̂i∗t − θ∗〉∣∣∣
(b)
≤ G+ ‖φt(at)‖(V λit )−1

(
‖Φtηt‖(V λit )−1 +

√
λi∗ ‖µ̂i∗ − θ∗‖

)
(c)
≤ G+RL

√√√√d log

(
1 + tL2

λid

δ

)
+ L

√
λi(bi + ci) (54)

(a) It results from triangular inequality. (b) This comes from the Assumption 2.2 as well as Theorem 1 in Abbasi-Yadkori
et al. (2011). (c) This is because of the Theorem 2 in Abbasi-Yadkori et al. (2011) and the fact that i∗ is the true model and
hence θ∗ ∈ B(µ̂i∗ , bi∗). Thus, we can have ‖µ̂i∗ − θ∗‖ ≤ (bi + ci). PS-OFUL employees this idea that at any time step,
any potentially true model should have a similar bound on its prediction. This is being enforced by the set of admissible
expert, St, where it only considers experts that have the following bound on their prediction at each time t ∈ [T ] as:

∣∣∣〈φt(at), θ̂it〉∣∣∣ ≤ G+RL

√√√√d log

(
1 + tL2

λid

δ

)
+ L

√
λi(bi + ci). (55)

If at some time step t, this bound does not hold for any expert i, then the algorithm simply eliminates that expert from the
set of admissible experts, since that model is not a true model (i.e., the reward does not belong to the ball of that model), and
that expert will remain out for the rest of the game.

Setting λi = 1
(bi+ci)2

in (55), we can bound the prediction of each expert i ∈ St at round t ∈ [T ] as

〈φt(at), θ̂it〉 ∈
[
−
(
G+ L+RL

√
d log

(1 +
tL2 maxi∈[M](bi+ci)2

d

δ

))

,

(
G+ L+RL

√
d log

(1 +
tL2 maxi∈[M](bi+ci)2

d

δ

))]
. (56)
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Putting together (53) and (56), we conclude that for all rounds t ∈ [T ] and experts i ∈ ST , with probability at least 1− δ,
the rewards yt and the experts’ predictions f it (Ht) are in the range [β, β + `] for

β = −
(
G+ L+RL

√
d log

(1 +
tL2 maxi∈[M](bi+ci)2

d

δ

))
,

` = 2

(
G+ L+RL

√
d log

(1 +
tL2 maxi∈[M](bi+ci)2

d

δ

))
.

(57)

Using Proposition A.1 in Appendix A with the bound on the observations and predictions in (57), with probability at least
1− δ, we obtain the following regret bound for SqAlg:

RSq(t) ≤ 8(logM)

(
(G+ L)2 +R2L2d log

(1 +
tL2 maxi∈[M](bi+ci)

2

d

δ

))
, (58)

in which we use the fact that for a, b > 0, (a+ b)2 ≤ 2a2 + 2b2. This concludes our proof.

C.3. Proof of Theorem 4.3

In order to fully specify the confidence set Ct and prove its validity, i.e., θ∗ ∈ P(θ∗ ∈ Ct) ≥ 1− δ, we should find a high
probability upper-bound γt(δ) for the sum of the square loss of the oracle predictions, i.e.,

t∑
s=1

(ŷs − 〈φs(as), θ∗〉)2 ≤ γt(δ).

Let zs = (ŷs−ys)2−(〈φs(as), θ̂i∗s 〉−ys)2, where i∗ ∈ I∗ is the index of a ball that contains θ∗. Since ys = 〈φs(as), θ∗〉+ηs,
we may write

zs = (ŷs − 〈φs(as), θ∗〉 − ηs)2 − (〈φs(as), θ̂i∗s 〉 − 〈φs(as), θ∗〉 − ηs)2

= (ŷs − 〈φs(as), θ∗〉)2 − (〈φs(as), θ̂i∗s 〉 − 〈φs(as), θ∗〉)2 + 2ηs(〈φs(as), θ̂i∗s 〉 − ŷs).

Since
∑t
s=1 zs ≤ RSq(t), whereRSq(t) is the regret of the regression oracle at round t, we have

t∑
s=1

(ŷs − 〈φs(as), θ∗〉)2 ≤ RSq(t) +

t∑
s=1

(〈φs(as), θ̂i∗s 〉 − 〈φs(as), θ∗〉)2 + 2

t∑
s=1

ηs(〈φs(as), θ̂i∗s 〉 − ŷs). (59)

From the definition of Ut in (9), we may upper-bound
∑t
s=1(〈φs(as), θ̂i∗s 〉 − 〈φs(as), θ∗〉)2 with Ut and write (59) as

t∑
s=1

(ŷs − 〈φs(as), θ∗〉)2 ≤ RSq(t) + Ut + 2

t∑
s=1

ηs(〈φs(as), θ̂i∗s 〉 − ŷs)

≤ RSq(t) + Ut + 2

t∑
s=1

ηs〈φs(as), θ̂i∗s − θ∗〉+ 2

t∑
s=1

ηs(〈φs(as), θ∗〉 − ŷs).
(60)

Then, from Proposition D.1 in Appendix D, with probability at least 1− δ, we have∣∣∣∣∣
t∑

s=1

ηs〈φs(as), θ̂i∗s − θ∗〉
∣∣∣∣∣ ≤ (61)

R

√√√√√2

(
1 +

t∑
s=1

〈φs(as), θ̂i∗s − θ∗〉2
)

log


√

1 +
∑t
s=1〈φs(ak), θ̂i∗s − θ∗〉2

δ

,



Feature and Parameter Selection in Stochastic Linear Bandits

and

∣∣∣∣∣
t∑

s=1

ηs(〈φs(as), θ∗〉 − ŷs)
∣∣∣∣∣ ≤ (62)

R

√√√√√2

(
1 +

t∑
s=1

(〈φs(as), θ∗〉 − ŷs)2
)

log


√

1 +
∑t
s=1 (〈φs(as), θ∗〉 − ŷs)2

δ

.
Using (61) and (62), we may write (60) as

t∑
s=1

(
ŷs − 〈φs(as), θ∗〉

)2 ≤ RSq(t) + Ut + 2R

√
2(1 + Ut) log

(√
1 + Ut/δ

)

+R

√√√√√8

(
1 +

t∑
s=1

(
ŷs − 〈φs(as), θ∗〉

)2)
log


√

1 +
∑t
s=1

(
ŷs − 〈φs(as), θ∗〉

)2
δ

.
(63)

It is easy to see that (63) can be written in the form u2 ≤ v + uw, where u =
√

1 +
∑t
s=1(〈φs(as), θ∗〉 − ŷs)2, v =

1 +RSq(t) + Ut + 2R

√
2(1 + Ut) log(

√
1+Ut
δ ), and w = R

√
8 log(u/δ). Then, by applying Lemma D.5 in Appendix D,

we may write u ≤ w+
√
v. Substituting for w, we can get u ≤ √v+R

√
8 log(u/δ). Then, by Lemma D.6 in Appendix D,

for δ ∈ (0, 1/4], we have

u ≤ √v + 4R

√√√√log

(
R
√

8 +
√
v

δ

)
,

which using the inequality (a+ b)2 ≤ 2a2 + 2b2, for any a and b, we can write it as

u2 ≤ 2v2 + 32R2 log

(
R
√

8 +
√
v

δ

)
.

Finally, we substitute u and v, and subtract 1 from both sides, and for δ ∈ (0, 1/4], we obtain

t∑
s=1

(
ŷs − 〈φs(as), θ∗〉

)2 ≤ 1 + 2RSq(t) + 2Ut + 4R

√
2(1 + Ut) log

(√
1 + Ut/δ

)

+ 32R2 log

R
√

8 +

√
1 +RSq(t) + Ut + 2R

√
2(1 + Ut) log

(√
1 + Ut/δ

)
δ

 := γt(δ).

(64)

Eq. 64 shows that for δ ∈ (0, 1/4], with probability at least 1 − δ, we have θ∗ ∈ Ct, which completes the proof of the
validity of the confidence set Ct.
We can now fully specify Ct by plugging Ut from (52) (see Appendix C.1) and RSq(t) from (58) (see Appendix C.2)
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into (64), and write γt(δ) as

γt(δ) := 1 + 2RSq(t) + 2Ut + 4R

√
2(1 + Ut) log

(√
1 + Ut/δ

)
+ 32R2 log

R
√

8 +

√
1 +RSq(t) + Ut + 2R

√
2(1 + Ut) log

(√
1 + Ut/δ

)
δ

 ,

where (65)

Ut = 3 + 8d log

(
1 +

tL2 maxi∈[M ](bi + ci)
2

d

)

+ 32R2 log

2
√

2R+

√
2 + 4d log

(
1 +

tL2 maxi∈[M](bi+ci)2

d

)
δ

 ,

RSq(t) = 8 log(M)

G2 + L2 + 2GL+R2L2d log

1 +
tL2 maxi∈[M](bi+ci)

2

d

δ

 ,

which concludes the proof.

A closer look at Ut andRSq(t), the two main terms in the definition of γt(δ), we may write them in terms of the dominant
terms as

Ut ≈
C1︷ ︸︸ ︷

3 + 16R2 log(2) +8d log

(
1 +

tL2 maxi∈[M ](bi + ci)
2

d

)
+ 32R2 log(1/δ)

+ 32R2 log

(
1 + 2R+ d log

(
1 +

tL2 maxi∈[M ](bi + ci)
2

d

))
≈ C1 + 32R2 log(1/δ) + 8d log

(
1 +

tL2 maxi∈[M ](bi + ci)
2

d

)
, (66)

and

RSq(t) =

C2︷ ︸︸ ︷
8(G+ L)2 log(M) +8R2L2d log(M) log(1/δ) + 8R2L2d log(M) log

(
1 +

tL2 maxi∈[M ](bi + ci)
2

d

)
= C2 + 8R2L2d log(M) log(1/δ) + 8R2L2d log(M) log

(
1 +

tL2 maxi∈[M ](bi + ci)
2

d

)
. (67)

Using (66) and (67), we may write γt(δ) in terms of the dominant terms as

γt(δ) ≈ 1 + 2C1 + 2C2 + 16R2
(
4 + L2d log(M)

)
log(1/δ)

+ 16d
(
1 +R2L2 log(M)

)
log

(
1 +

tL2 maxi∈[M ](bi + ci)
2

d

)
. (68)

C.4. Proof of Lemma 4.6

In Theorem 4.3, we proved that at each round, with probability at least 1− δ, the true reward parameter θ∗ belongs to the
confidence set Ct of the PS-OFUL algorithm. Here, we show how the regret of PS-OFUL is related to the radius γt(δ) of
this confidence set.

Here we assume that at the first d rounds, the algorithm plays actions whose features are of the form φi(ai) = Lei, ∀i ∈ [d],
where ei = [0, . . . , 1, . . . , 0] is a d-dimensional vector whose elements are all 0, except a 1 at the ith position. In this case,



Feature and Parameter Selection in Stochastic Linear Bandits

we can define a matrix Vt as

Vt =

t−1∑
s=1

φs(as)
>φs(as) = L2I +

t−1∑
s=d+1

φt(at)
>φt(at), (69)

and use it to rewrite the confidence set as

Ct−1 =
{
θ ∈ Rd : (θ − θ̂t)Vt(θ − θ̂t) +

t−1∑
s=1

(
ŷs − 〈φs(as), θ̂t〉

)2 ≤ γt(δ)}, (70)

where θ̂t = argminθ∈Rd
∑t−1
s=1

(
ŷs − 〈φs(as), θ〉

)2
. The confidence set Ct in (70) is contained in a larger ellipsoid

Ct−1 ⊆
{
θ ∈ Rd : (θ − θ̂t)Vt(θ − θ̂t) ≤ γt(δ)

}
=
{
θ ∈ Rd : ‖θ − θ̂t‖2Vt ≤ γt(δ)

}
. (71)

Given (at, θ̃t) = arg maxa∈At maxθ∈Ct−1
〈φt(a), θ〉 are the action and parameter resulted from solving the optimization

problem at round t of the PS-OFUL algorithm, we may write

〈φt(a∗t ), θ∗〉 − 〈φt(at), θ∗〉 ≤ 〈φt(at), θ̃t〉 − 〈φt(at), θ∗〉
= 〈φt(at), θ̃t − θ̂t〉+ 〈φt(at), θ̂t − θ∗〉
≤ ‖φt(at)‖V −1

t
‖θ̃t − θ̂t‖Vt + ‖φt(at)‖V −1

t
‖θ̂t − θ∗‖Vt

≤ 2
√
γt(δ) ‖φt(at)‖V −1

t
(because θ∗, θ̃t ∈ Ct−1). (72)

Since ∀a ∈ ⋃Tt=1At, we assume that |〈φ(a), θ∗〉| ≤ G, we can upper-bound the instantaneous regret in (72) as

〈φt(a∗t ), θ∗〉 − 〈φt(at), θ∗〉 ≤ 2 min
{
G,
√
γt(δ) ‖φt(at)‖V −1

t

}
. (73)

Using (73), we can bound the transfer-regret of PS-OFUL as

RPS-OFUL(T ) =

T∑
t=1

〈φt(a∗t )− φt(at), θ∗〉 ≤ 2Gd+

T∑
t=d+1

〈φt(a∗t )− φt(at), θ∗〉

≤ 2Gd+ 2

T∑
t=d+1

min{G,
√
γt(δ) ‖φt(at)‖V −1

t
}

≤ 2Gd+ 2

T∑
t=d+1

√
γt(δ) min{G, ‖φt(at)‖V −1

t
} (since γt(δ) ≥ 1)

≤ 2Gd+ 2

(
max
d<t≤T

√
γt(δ)

) T∑
t=d+1

min{G, ‖φt(at)‖V −1
t
}

≤ 2Gd+ 2

(
max
d<t≤T

√
γt(δ)

)
(max{1, G})

T∑
t=d+1

min{1, ‖φt(at)‖V −1
t
}

≤ 2Gd+ 2

(
max
d<t≤T

√
γt(δ)

)
(max{1, G})

√√√√T

T∑
t=d+1

min{1, ‖φt(at)‖2V −1
t
}

≤ 2Gd+ 2

(
max
d<t≤T

√
γt(δ)

)
(max{1, G})

√
2T log

(
det(VT )

det(Vd)

)
, (74)

where the last inequality follows from Lemma D.2 in Appendix D. Then, using Lemma D.3 in Appendix D, we can bound

det(VT ) ≤
(
L2 + TL2

d

)d
and det(Vd) = L2d. Hence, we may write (74) as

RPS-OFUL(T ) ≤ 2Gd+ 2 max{1, G}
√

2dT log

(
1 +

T

d

)
max
d<t≤T

γt(δ). (75)
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C.5. Proof of Theorem 4.2

If we substitute γt(δ) from (68) in the regret bound (75), we may write it (in terms of the dominant terms) as

RPS-OFUL(T ) ≤ 2Gd+ 2
√

2 max{1, G}
√
dT log

(
1 +

T

d

)

×
√
C3 + 16R2

(
4 + L2d log(M)

)
log(1/δ) + 16d

(
1 +R2L2 log(M)

)
log

(
1 +

TL2 maxi∈[M ](bi + ci)2

d

)

= O

dRLmax{1, G}
√

1 + log(M)×

√√√√T log

(
1 +

T

d

)
log

(
1 +

TL2 maxi∈[M](bi+ci)2

d

δ

) , (76)

where C3 = 1 + 2C1 + 2C2, and hence C3 = 7 + 32R2 log(2) + 16(G+ L)2 log(M).
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D. Auxiliary Tools
Here we report auxiliary results that we use in our proofs in other appendices.

We start with stating Theorem 7 in (Abbasi-Yadkori et al., 2012), which is the self-normalized martingale tail inequality for
the scalar random variables.

Proposition D.1 (Self-normalized bound for martingales). Let {Ft}∞t=1 be a filtration. Let τ be a stopping time w.r.t to the
filtration {Ft}∞t=1, i.e., the event {τ ≤ t} belongs to Ft+1. Let {Zt}∞t=1 be a sequence of real-valued variables such that
Zt is Ft-measurable. Let {ηt}∞t=1 be a sequence of real-valued random variables such that ηt is Ft+1 measurable and is
conditionally R-sub-Gaussian. Then, for any δ > 0, with probability at least 1− δ,∥∥∥∥∥

τ∑
t=1

ηtZt

∥∥∥∥∥ ≤ R
√√√√2

(
1 +

τ∑
t=1

Z2
t

)
log

(√
1 +

∑τ
t=1 Z

2
t

δ

)
.

Next, we state a direct application of Lemma 11 in (Abbasi-Yadkori et al., 2011) that bounds the cumulative sum of∑t−1
s=1 ‖φs(as)‖

2
V −1
s

which plays an important role in most of the proofs for linear bandits problems.

Lemma D.2. Let λ > 0 and Vt = λI +
∑t−1
s=1 φs(as)φ

>
s (as). If for all a ∈ ∪t−1s=1As, we have ‖φs(a)‖2 ≤ L, then we may

write

t−1∑
s=1

min{1, ‖φs(as)‖2V −1
s
} ≤ 2 log

(
det(Vt)

det(λI)

)
.

Next, we present a determinant-trace inequality matrix result.

Lemma D.3 (Determinant-Trace Inequality). SupposeX1, . . . , Xt−1 ∈ Rd, and for any 1 ≤ s ≤ t−1, we have ‖Xs‖2 ≤ L.
Let Vt = λI +

∑t−1
s=1XsX

>
s , for some λ > 0. Then we have

det(Vt) ≤
(
λ+

tL2

d

)d
.

Proof. Let α1, . . . , αd be the eigenvalues of Vt. Since Vt is positive definite, its eigenvalues are positive. Also not that
det(Vt) = Πd

s=1αs and trace(Vt) =
∑d
s=1 αs. By arithmetic-geometric means inequality we have

d
√
α1 . . . αd ≤

α1 + · · ·+ αd
d

.

Therefore, det(Vt) ≤
(
trace(Vt)

d

)d
. It suffices to upper-bound the trace of Vt as

trace(Vt) = trace(λI) +

t−1∑
s=1

trace(XsX
>
s ) = dλ+

t−1∑
s=1

‖Xs‖22 ≤ dλ+ tL2,

and the result follows.

Next, we state a bound on the absolute value of the R-sub-Gaussian random variable.

Lemma D.4. Let {Ft}∞t=1 be a filtration. Let {η}∞t=1 be a real-valued stochastic process such that ηt is Ft-measurable and
ηt is conditionally R-sub-Gaussian for some R > 0, i.e.,

∀λ ∈ R, E [ηt|Ft] = 0, E
[
eληt |Ft

]
≤ exp

(
λ2R2

2

)
.

Then, condition on filtration Ft, with probability at least 1− δ, we have |ηt| ≤ R
√

2 log(2/δ).
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Proof. Let λ > 0. Then,

P(ηt ≥ k|Ft) = P(eληt ≥ eλk|Ft) ≤ e−λk E[eληt |Ft] (by Markov’s inequality)

≤ e−λkeλ
2R2

2 = exp

(
−λk +

λ2R2

2

)
. (77)

Optimizing for λ, and thus, selecting λ = k
R2 , we conclude that

P(ηt ≥ k|Ft) ≤ e−
k2

2R2 .

Repeating this argument for −ηt, we also obtain P(ηt ≤ −k|Ft) ≤ e−
k2

2R2 . Combining these two bounds, we can conclude
that

P(|ηt| ≥ k|Ft) ≤ 2e−
k2

2R2 . (78)

From (78), with the choice of δ = 2e−
k2

2R2 , and thus k = R
√

2 log(2/δ), completes the proof.

Then, we state a square-root trick for positive numbers.

Lemma D.5. Let a, b > 0. If z2 ≤ a+ bz, then z ≤ √a+ b.

Proof. Let q(z) = z2 − bz − a. We can rewrite the condition z2 ≤ a+ bz as q(z) ≤ 0. Then we know that the quadratic
polynomial q(z) has the following two roots

z∗1 =
b+
√
b2 + 4a

2
z∗2 =

b−
√
b2 + 4a

2
.

Then, we know that the condition q(z) ≤ 0, implies that min{z∗1 , z∗2} ≤ z ≤ max{z∗1 , z∗2}. Therefore, for positive numbers
a, b, we get

z ≤ max{z∗1 , z∗2} =
b+
√
b2 + 4a

2
≤ b+

√
a,

where for the last inequality, we use the fact that for u, v > 0,
√
u+ v ≤ √u+

√
v.

Next, we restate a simple logarithmic trick from (Abbasi-Yadkori et al., 2012).

Lemma D.6 (Proposition 10 in Abbasi-Yadkori et al. 2012). Let c ≥ 1, q > 0, δ ∈ (0, 1/4]. If s ≥ 1 and s ≤
c+ q

√
log(s/δ), then we have s ≤ c+ q

√
2 log( c+qδ ).
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E. Relation to Latent Bandits
In this section, we informally show that if the goal in latent bandits is to have a better scaling with the number of actions
K (e.g., the number of actions K is much larger than the number of latent states M ), we can use a different bandit model
selection strategy, called regret balancing (Abbasi-Yadkori et al., 2020; Pacchiano et al., 2020a;b; Cutkosky et al., 2021) to
obtain an improved regret that scales as min{εT +

√
MT,

√
KMT}. This rate is the best of the regret of PS-OFUL, which

scales as
√
KT , and the regret of the latent bandit algorithm of Hong et al. (2020), which scales as εT +

√
MT .

In regret balancing, in each round, the model selection strategy chooses one of M base algorithms. We denote by Ni,t, the
number of times that the base algorithm i has been selected up to round t, and by Ri,t, the cumulative rewards of this base
algorithm during these Ni,t rounds. Given a reference regret bound U : [T ]→ R, in each round t ∈ [T ], the algorithm first
finds the optimistic base algorithm It and its value bt, i.e.,

It = argmax
i∈[M ]

Ri,t
Ni,t

+
U(Ni,t)

Ni,t
, bt =

RIt,t
NIt,t

+
U(NIt,t)

NIt,t
, (79)

and then takes the action recommended by It and uses its observed reward to update the base algorithm It.

We can apply regret balancing to the problem of latent bandits in the following way. We consider M + 1 base algorithms:
one that plays UCB, and M , each corresponds to a latent value and always plays the greedy action of that latent model
(which is guaranteed to be ε-accurate by assumption). If the regret balancing strategy selects the UCB base algorithm
in all rounds, it would suffer the regret

√
Kt +

√
t, and if it selects the optimal base algorithm, i.e., the base algorithm

corresponding to the correct latent model, it would suffer the regret εt+
√
t. Note that by regret, we mean the actual regret

and not pseudo-regret, and thus,
√
t is the consequence of noise in the reward signal. Thus, we select the reference regret

bound of our regret balancing strategy as U(t) = min{εt+
√
t,
√
Kt+

√
t}. We may write the regret of the resulting regret

balancing strategy as follows:

R(T )
(a)
=

M+1∑
i=1

Ni,Tµ∗ −Ri,T
(b)
≤

M+1∑
i=1

Ni,T bT −Ri,T (c)
=

M+1∑
i=1

U(Ni,T )

≤
M+1∑
i=1

min
{
εNi,T +

√
Ni,T ,

√
KNi,T +

√
Ni,T

}
≤ min

{M+1∑
i=1

(
εNi,T +

√
Ni,T

)
,

M+1∑
i=1

(√
KNi,T +

√
Ni,T

)}
(d)
= min

{
εT +

M+1∑
i=1

√
Ni,T ,

M+1∑
i=1

(√
KNi,T +

√
Ni,T

)}
(e)
≤ min

{
εT +

M+1∑
i=1

√
T

M + 1
,

M+1∑
i=1

(√
K

T

M + 1
+

√
T

M + 1

)}
= min

{
εT +

√
(M + 1)T ,

√
K(M + 1)T +

√
(M + 1)T

}
= O

(
min

{
εT +

√
MT,

√
KMT

})
,

which concludes our claim. Note that we used the following steps in our above derivations: (a) µ∗ is the mean of the optimal
arm. (b) This is because with high probability we have µ∗ ≤ bt, ∀t ∈ [T ]. (c) This is from the definition bt in (79). (d)
This is due to the fact that

∑M+1
i=1 Ni,T = T . (e) The maximizer of

∑M+1
i=1

√
Ni,T , subject to

∑M+1
i=1 Ni,T = T , is when

all {Ni,T }M+1
i=1 are equal.
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Figure 4. Feature selection on MNIST dataset. The regrets are averaged over 100 LB problems.
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Figure 5. Feature selection on CIFAR-100 dataset. The regrets are averaged over 100 LB problems.

F. More on Experimental Results
We evaluate the performances of FS-SCB and PS-OFUL algorithms in a synthetic linear bandit problem and real-world
image classification problems on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and MNIST datasets (LeCun et al.,
1998).

F.1. Feature Selection

F.1.1. MNIST DATASET

MNIST dataset consists of 60000 training and 10000 test images of size 28× 28, each belonging to one of 10 classes. We
train a convolutional neural network (CNN) with M different number of epochs on MNIST data, and use their second layer
to the last as our d = 10-dimensional feature maps {φi}Mi=1. These feature maps have test accuracy between 20% (worst
model) and 97% (best model). We set the best one as true model φi∗ . For each class s ∈ S = {0, . . . , 9}, we fit a linear
model, given the feature map φi∗ , and obtain parameters {θi∗s }9s=0. At the beginning of each LB task, we select a class
s∗ ∈ S uniformly at random and set its parameter to θi∗s∗ . At each round t ∈ [T ], the learner is given an action set consists of
10 images, one from class s∗ and the rest randomly selected from the other classes. The reward of each action a is defined
as 〈φi∗(a), θi∗s∗〉+ ηt ∈ [0, 1], where φi∗(a) is the application of the feature map φi∗ to the image corresponding to action a
and ηt ∼ U [−0.5, 0.5] is the noise.

In Figure 4, we compare the regret of our FS-SCB algorithm for different number of models M with a regret balancing
algorithm that uses SquareCB baselines (RB-SCB), and three SquareCB algorithms that use the best (Oracle), second-best
(with test accuracy 84%), and worst feature maps (experts). Each plot is averaged over 100 LB problems. Figure 4 shows
that 1) FS-SCB always performs between the best and second-best experts, 2) the regret of FS-SCB that scales as

√
logM is

close to RB-SCB (scales as
√
M ) for small M , but gets much better as M grows, and 3) RB-SCB has much higher variance

than the other algorithms.



Feature and Parameter Selection in Stochastic Linear Bandits

0 500 1000 1500
0.0

0.2

0.4

0.6

0.8

1.0
M = 2, d = 12

PS-OFUL

OFUL

Oracle

RB-OFUL

0 500 1000 1500

M = 5, d = 12

0 500 1000 1500

M = 10, d = 12

Round t

M
ea

n
R

ew
ar

d
s

Figure 6. Parameter selection on MNIST dataset, where 100M datasets of size 500 are used to define the balls. The results are averaged
over 50 runs.
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Figure 7. Parameter selection on MNIST dataset, where 10M datasets of size 50 are used to define the balls. The results are averaged
over 50 runs.

F.1.2. CIFAR-100 DATASET

CIFAR-100 dataset consists of 50000 training and 10000 test images of size 32× 32, each belonging to one of 100 classes.
We extracted the features of the images by fine tuning and taking the output of the second-to-last layer of the EfficientNet-B0
Network (Tan & Le, 2019) and got the feature matrix of dimension 50000× 1280. For all experts i ∈ [M ], we multiply this
feature matrix with a Gaussian random matrix of dimension 1280× di for di ∈ [2, 128] to get the di dimensional feature
maps φi. These feature maps have accuracy between 5% (worst model) and 78% (best model). We set the best one as true
model φi∗ . For each class s ∈ S = {0, . . . , 99}, we fit a linear model, given the feature map φi∗ and obtain parameters
{θi∗s }99s=0. At the beginning of each LB task, we select a class s∗ ∈ S uniformly at random and set its parameter to θi∗s∗ . At
each round t ∈ [T ], the learner is given an action set consists of 10 images, one from class s∗ and the rest randomly selected
from the other classes. The reward of each action a is defined as 〈φi∗(a), θi∗s∗〉+ ηt ∈ [0, 1], where φi∗(a) is the application
of the feature map φi∗ to the image corresponding to action a and ηt ∼ U [−0.5, 0.5] is the noise.

In Figure 5, we compare the regret of our FS-SCB algorithm for different number of models M with a regret balancing
algorithm that uses SquareCB baselines (RB-SCB) and aggregate them according to (79), and three SquareCB algorithms
that use the best (Oracle), second-best (with test accuracy 55%), and worst feature maps (experts). Each plot is averaged
over 100 LB problems. Figure 5 shows that 1) FS-SCB always performs close to the best and second-best experts, 2) the
regret of FS-SCB that scales as

√
logM is close to RB-SCB (scales as

√
M ) for small M , but gets much better as M grows,

and 3) RB-SCB has much higher variance than the other algorithms.

F.2. Parameter Selection

F.2.1. IMAGE CLASSIFICATION ON MNIST DATASET

MNIST dataset consists of 60000 test and 10000 training images of size 28 × 28, each belonging to one of 10 classes.
We train a CNN with d = 12 neurons on second-to-last layer on MNIST dataset with 98% accuracy. We then select this
d-dimensional layer as our feature map φ. To define our M models (balls), we sample 100M datasets of size 500. For each
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dataset, we randomly select a class s∗ ∈ [M ], assign reward 1 to images from s∗ and 0 to other images, and fit a linear
model to it to obtain a parameter vector. Finally, we fit a Gaussian mixture model (GMM) with M components to these
100M parameter vectors and use the means and covariances of the resulting clusters as the center and radii of our M models
(balls). At the beginning of each LB task, we select a class s∗ ∈ [M ] uniformly at random. At each round t ∈ [T ], the
learner is given an action set consists of 10 images, one from class s∗ and the rest randomly selected from the other classes.
The learner receives a reward from Ber(0.9) if it selects the image from class s∗, and from Ber(0.1), otherwise.

In Figure 6, we compare the mean reward of PS-OFUL for different number of models M with a regret balancing algorithm
that uses OFUL baselines (RB-OFUL) (Abbasi-Yadkori et al., 2020), OFUL (individual learning), and BIAS-OFUL (Cella
et al., 2020) with bias being the center of the true model (Oracle). Figure 6 shows 1) the good performance of PS-OFUL,
2) the performance of PS-OFUL gets better than RB-OFUL as M grows (

√
logM vs.

√
M scaling), 3) the large variance

of RB-OFUL, especially in comparison to PS-OFUL, and finally 4) the advantage of transfer (PS-OFUL) over individual
(OFUL) learning.

Impact of the model estimates: In order to demonstrate the impact of the accuracy of the model center estimates as well
as the radii of the balls, we defined a less accurate set of M models (balls) using 10M datasets of size 50 (as opposed to
100M datasets of size 500). In Figure 7, we compare the mean reward of PS-OFUL for different number of models M with
RB-OFUL, OFUL, and BIAS-OFUL.


