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Abstract—In this work we investigate meta-learning (or
learning-to-learn) approaches in multi-task linear stochastic ban-
dit problems that can originate from multiple environments.
Inspired by the work of [1] on meta-learning in a sequence of
linear bandit problems whose parameters are sampled from a
single distribution (i.e., a single environment), here we consider
the feasibility of meta-learning when task parameters are drawn
from a mixture distribution instead. For this problem, we propose
a regularized version of the OFUL algorithm that, when trained
on tasks with labeled environments, achieves low regret on a new
task without requiring knowledge of the environment from which
the new task originates. Specifically, our regret bound for the new
algorithm captures the effect of environment misclassification and
highlights the benefits over learning each task separately or meta-
learning without recognition of the distinct mixture components.

Index Terms—Meta-learning, Linear Stochastic Bandit, Se-
quential Decision Making

I. INTRODUCTION

Stochastic bandit optimization algorithms have long found
applications in many fields where some characteristics of the
users’ response are not known and can only be learnt through a
limited number of noisy observations, including recommenda-
tion engines, advertisement placement, personalized medicine,
etc. The learner’s objective for the overall learning task consists
of maximizing the cumulative reward gained during T rounds
of interaction with the user. The expected reward gained at
each round t is a function f(xt) of the action xt that the
learner chooses to play, and f is not known to the learner.
There is a rich literature covering parametric or non-parametric
characterizations of f , as well as finite or continuous action sets.
An important and widely applicable case is the stochastic linear
bandit (LB) problem, where the expected reward is linear in
the action xt, i.e., f(xt) = xTt θ, with θ denoting an unknown
vector that describes the users’ characteristics.

Now consider the scenario where a recommendation system
consecutively deals with users whose characteristics (e.g.,
the parameter vector θ in the LB case) originate from an
unknown probability distribution ρ. A classical bandit algorithm
would approach each learning task independently, which would
translate to high exploration cost to estimate θ for each
user. Motivated by this, the work of [1] explores the idea of
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transferring knowledge between consecutive tasks by designing
a meta-learning algorithm for the LB problem. Meta-learning
approaches, recently made popular in the reinforcement learn-
ing literature in order to address sample complexity issues,
allow algorithms to acquire inductive biases in a data-driven
manner in order to adapt faster to new situations based on their
limited past experience.

In this work we consider the case where the user popula-
tion’s preferences originate from a mixture model, with sub-
populations that have distinct (unknown) preference distribu-
tions. In this case, we say that the consecutive learning tasks
originate from multiple environments. Consider for example
a recommendation system where men and women may have
distinct preferences (e.g. on Netflix, some movies are seen to be
preferred by more women and others by more men). Focused
on the LB problem, we show that if the sub-populations’
preference distributions are sufficiently distinct, in order to best
transfer knowledge across learning tasks, the meta-learning
algorithm should first estimate the environment from which the
task originates. Our proposed algorithm MEML-OFUL, and
the corresponding regret guarantees, formalize the trade-offs
associated with this design choice.

Before formally stating the problem, let us provide an
overview of prior art under three relevant categories.
Multi-armed Bandits (MAB). Two popular algorithms exist
for MAB: 1) the upper confidence bound (UCB) algorithm
based on the optimism in the face of uncertainty (OFU)
principle [2]–[4], which chooses the best feasible environment
and corresponding optimal action at each time step with respect
to confidence regions on the unknown parameter; 2) Thompson
Sampling (TS) algorithm (a.k.a., posterior sampling), [5]–[7]
which samples an environment from the prior at each time
step and selects the optimal action with respect to the sampled
parameter. For the stochastic Linear bandit (LB) problems, there
exist two well-known algorithms for LB are: OFUL or Linear
UCB (LinUCB) and Linear Thompson Sampling (LinTS). [8]–
[11] provided a regret bound of order O(

√
T log T ) for OFUL

algorithm and [12]–[15] provided a regret bound of order
O(
√
T log3/2 T ) for LinTS in a frequentist setting.

Multi-task Leaning and Meta-learning. There has been
an increasing attention on theoretically studying the ability of a
learner to transfer knowledge between different learning tasks,
commonly referred to transfer learning and applied to both the
multi-task learning problem [16]–[21] and the meta-learning
problem [22]–[28] in the past years. In particular, the goal of



multi-task learning is to design an algorithm that performs well
on a group of (possibly concurrent) tasks that share a similar
representation (e.g., low-dimensional linear representation). The
goal of the meta-learning is to select an algorithm that can
utilize a number of training tasks from a common environment
in order to rapidly adapt to the new task that shares the same
environment with the training tasks. We focus on the latter in
this paper. Recently, there have been a few works that study
the multi-tasks learning in the bandit framework [29]–[36]. In
particular, the recent works of [37]–[39] study meta-learning
in multi-armed bandits problem with a Bayesian approach. In
their settings, they consider a mixture Gaussian distribution as a
prior distribution and propose a Thompson-Sampling algorithm
with provable regret guarantees. However, in this work, we
study a frequentist version of this problem and we propose a
UCB-based algorithm. We also consider more general families
of distribution for the mixture model.

II. PROBLEM FORMULATION

In this section, we briefly recall the preliminaries on
stochastic linear bandit (LB) problem and previous results on
meta-learning in LB, and then we present the multi-environment
meta-learning setting considered in this work.

A. The Linear Stochastic Bandit (LB) Problem

In the LB problem, at each round t ∈ [T ], the learner is
given an action set Dt ⊆ Rd from which she chooses an action
xt ∈ Dt and observes a random reward

yt = x>t θ + ξt. (1)

In (1), the parameter vector θ ∈ Rd is an unknown but
fixed reward parameter and ξt is zero-mean additive noise.
If provided with the knowledge of the true reward parameter θ,
the optimal policy at each round t is to play the optimal action
x?t = arg maxx∈Dt x

>θ that maximizes the instantaneous
reward. However, in the absence of such knowledge, the goal
of the learner is to collect as much reward as possible, or
minimise the cumulative pseudo-regret up to round T :

R(T, θ) =

T∑
t=1

x>? θ − x>t θ. (2)

This classical setup defines a single learning task that takes T
rounds to complete. Next, we will explore the setting where
the learner is presented with a sequence of learning tasks in
the form of LB problems that share probabilistic models for
the unknown parameter vector θ. By leveraging the structure
shared between consecutive tasks, a so-called meta-learning
algorithm introduces new inductive biases in the LB problem
that allow the learner to transfer knowledge to future tasks.

B. Meta-Learning in LB

The problem of meta-learning for the linear bandit prob-
lem was first introduced by [1]. Their meta-learning setting
consists of a sequence of consecutive linear bandit problems

that share the same environment, i.e., their parameter vec-
tors θ1, . . . , θN , . . . are sampled independently from a task-
distribution ρ with a bounded support in Rd that is unknown to
the learner. The learner’s goal is to leverage the task similarities
(i.e., the fact that they share the same environment) in order to
minimize the regret for a new task. In particular, [1] designed
an algorithm that achieves a low regret on any new task after
being trained over the data provided by N completed tasks.
The goal is to control the so-called transfer regret incurred on
the (N + 1)-st task, defined as:

R(T ) = Eθ∼ρ [E [R(T, θ)]] . (3)

Next we present the setting that we consider in this work, which
is an extension of this setting to include multiple environments.

C. Multi-Environment Meta-Learning in LB

In the multi-environment setting, we assume that the
consecutive tasks i = 1, . . . , N originate from one of m
environments ν = 1, 2, . . . ,m following a known multinomial
distribution with probabilities (p1, p2, . . . , pm). Conditioned
on the environment ν, the task distribution for the parameter
vector θ is denoted as ρν . The distributions ρν have bounded
supports in Rd and are not known to the learner. Instead
of approaching each learning task independently, the learner
collects information while interacting with the environments
over N consecutive tasks in order to perform meta-learning.
Specifically, after completing the i-th task, we store the whole
interaction in a dataset Zi = {(xi,t, yi,t)}Tt=1. Then, using the
collected datasets from the first N completed tasks, our goal
is to design an algorithm that minimizes the regret for a new
task with parameter θN+1, without knowing the environment
ν from which θN+1 is sampled. In other words, we wish to
design an algorithm that, after being trained over N datasets,
leverages its past observations in order to introduce inductive
biases to minimize the so-called transfer-regret for task N + 1:

R(T ) = Eν [Eθ∼ρν [E [R(T, θ)]]] (4)

=

m∑
i=1

Eθ∼ρν [E [R(T, θ)] |ν = i] pi. (5)

In (4), the outer expectation is with respect to the randomness
over set of possible environments, the middle expectation is
with respect to the the task parameters in each environment, and
the inner expectation is with respect to the noisy components of
the reward realizations. Note that due to this multi-environment
setup, the knowledge gained from all the collected N datasets
Zi, i = 1, . . . , N may not transfer well to the new task param-
eter θN+1 since the learner does not know the environment
from which the new task originates. Accordingly, we need an
algorithm that first decides to which environment the new task
belongs. Then it uses an appropriate meta-learning scheme
that considers the differences of the environments in order to
leverage the task similarities to minimize the transfer regret.
In order to provide training data for the algorithm to be able
to distinguish between the environments (i.e., gain information
regarding the unknown task distributions ρν), we require that
the learner is presented with a number of initial tasks with



labeled environments in order to obtain a stationary behaviour
in terms of estimating a good bias parameter. Specifically, we
introduce the following assumption.

Assumption 1: We assume that for the first N completed
tasks, the learner has knowledge regarding the environment
from which each task originates. In particular, we assume the
learner has access to the sets Sν = {i : θi ∼ ρν , i = 1, . . . , N}
for ν = 1, . . . ,m. We let Nν = |Sν |.

D. Model Assumptions

Next, we present two more assumptions that are standard in
the bandit literature [10].

Assumption 2: For all t, ξt are conditionally zero-mean
R-sub-Gaussian noise variables, i.e., E[ξt|Ft−1] = 0, and
E[eλξt |Ft−1] ≤ exp (λ

2R2

2 ),∀λ ∈ R.
Assumption 3: There exists a positive constant S and L such

that for every LB problem, ‖θ‖2 ≤ S and ‖x‖2 ≤ L for every
x ∈ ∪Ts=1Ds. Also, x>θ ∈ [−1, 1], for all x ∈ Dt.

III. BACKGROUND ON BIASED OFUL
Before introducing our proposed MEML-OFUL algorithm

for the setting introduced in Section II-C, in the following,
we first review the OFUL algorithm and the biased version of
OFUL, which our algorithm builds upon.
A. OFUL

For the single LB problem in Section II-A, we consider the
OFUL algorithm [10]. At each round t ∈ [T ], the algorithm uses
the previous action-observation pairs and obtains a regularized
least-square (RLS) estimate of θ as θ̂t = V −1

t

∑t−1
s=1 ysxs,

where Vt = λI +
∑t−1
s=1 xsx

>
s . Then, based on θ̂t, OFUL

builds a confidence set Ct(δ) = {v ∈ Rd :
∥∥∥θ̂t − v∥∥∥

Vt
≤

R

√
d log

(
1+tL2/λ

δ

)
+
√
λS := βt(δ)} that includes a true

reward parameter θ with probability at least 1 − δ. Then, it
plays an action xt by solving xt = arg maxx∈Dt maxv∈Ct x

>v.
For this algorithm, [10] proves a high probability regret bound
of order O(d

√
T log(TL

2

δ )).

B. Biased OFUL

For a single LB problem, [1] studies the biased version
of the OFUL algorithm, called BIAS-OFUL. In particular,
given a bias parameter h ∈ Rd for the true reward parameter
θ, at each round t ∈ [T ], the RLS-estimate θ̂ht such that
θ̂ht = V −1

t

∑t
s=1 xs(ys−x>s h)+h. Then, given an oracle that

computes ‖h− θ‖2 for their algorithm, they show that they can
build a confidence region Cht (δ) = {v ∈ Rd :

∥∥∥θ̂ht − v∥∥∥
Vt
≤

R

√
d log

(
1+tL2/λ

δ

)
+
√
λ ‖h− θ‖2} such that θ ∈ Cht with

probability at least 1 − δ. They also adopt the same action
selection rule as the one in OFUL, and using the Corollary
19.3 of [40], they provide an upper bound for the expected
regret of their algorithm.

Proposition 3.1 (Lem. 1, [1]): Under Assumptions 2, 3, and
considering λ ≥ 1, the expected regret of the BIAS-OFUL is
bounded as:

E[R(T, θ?)] ≤ C
√
Td log(1 +

TL

λd
)(

R
√
d log(T + T 2L/(λd)) +

√
λ ‖h− θ?‖2

)
, (6)

where C > 0 is a universal constant factor.
It can be seen in (6) that having a good bias parameter

h = θ? brings a substantial benefit with respect to the regret
(as λ→∞, the regret will tend to zero) in comparison to the
unbiased case where h = 0.

Then, [1] adopts the BIAS-OFUL algorithm for the meta-
learning setting described in Section II-B. They adopt from
[25], [41], the idea of adding a bias parameter in a sequence
of the tasks that share the same environment and apply it to
the linear stochastic bandit framework. Specifically. they show
that for the meta-learning problem introduced in Section II-B,
running BIAS-OFUL with a bias parameter h = θ̄ := Eθ∼ρ[θ]
would significantly speed up the process of learning (i.e., lower
regret) with respect to the unbiased case. This holds for a
family of task-distributions where the second moment is much
larger than the variance as formalized below.

Assumption 4: The task-distribution ρ satisfies:

Varθ̄ = Eθ∼ρ[
∥∥θ − θ̄∥∥2

2
]� Eθ∼ρ[‖θ‖22] = Var0,

Overall, they show the following upper bound for the expected
transfer regret defined in (3).

Proposition 3.2 (Lem.2, [1]): Let Assumptions 2, 3 hold,
and fix λ = 1

TVarh
. In the case where the tasks share the same

environment ρ satisfying Assumption 4, the expected transfer
regret of BIAS-OFUL with a bias parameter h is bounded as:

Eθ∼ρ [E [R(T, θ)]] ≤ dC

√
T log

(
1 +

T 2L(Eθ∼ρ[‖θ − h‖22])
d

)
They also propose two strategies to estimate the bias parameter
h within the meta-learning setting in order to minimize the
transfer regret. In particular, they show that if they can estimate
the bias parameter h equal to θ̄ with the meta-learning approach,
then according to the Assumption 4, they substantially benefit
from the task similarity compared to learning each task
separately, i.e., compared to choosing h = 0.

IV. MULTI-ENVIRONMENT META-LEARNING ALGORITHM
(MEML-OFUL)

MEML-OFUL builds on BIAS-OFUL to address the case
where the learning tasks can originate from multiple environ-
ments as explained in Section II-C. The summary of MEML-
OFUL is presented in Algorithm 1. In particular, in order to
minimize the transfer regret in (4), we employ the idea of
applying a bias parameter for each task-distribution ρν within
the meta-learning setting. For brevity, we will state the results
for the case where m = 2, i.e., there are only two environments.
The extension to the case where m > 2 is straightforward.

One of the main challenges of the multi-environment meta-
learning problem is that when a new task θN+1 is sampled,
the learner does not know from which task distribution this



Algorithm 1: MEML-OFUL algorithm for task N + 1

1 Input: λ > 1, T0, T , datasets of N completed tasks,
2 Set ĥ1

N+1 and ĥ2
N+1 according to (7)

3 for t = 1, . . . , T0 do
4 Randomly choose xN+1,t ∈ Dt, and observe the

reward yN+1,t = x>N+1,tθN+1 + ξN+1,t.
5 Compute θ̂N+1,t = V −1

N+1,t

∑t−1
s=1 yN+1,sxN+1,s .

6 Select the bias

ĥN+1 = arg minj∈{1,2}

∥∥∥θ̂N+1,T0 − ĥ
j
N+1

∥∥∥2

2
.

7 for t = T0, . . . , T + 1 do
8 Build a confidence region Cht with a bias ĥjN+1

9 Play xN+1,t = arg maxx∈Dt maxv∈Cht x
>v

10 Observe reward yN+1,t = x>N+1,tθi + ξN+1,t

11 Update θ̂N+1,t+1 =

(λI + VN+1,t+1)−1
∑t
s=1 xN+1,s(yN+1,s −

x>N+1,sĥN+1) + ĥN+1

12 Update VN+1,t+1 =
∑t
s=1 xN+1,sx

>
N+1,s

task originated, and hence which bias parameter to apply.
In particular, for a new task θN+1, there exist two bias
parameters ĥ1

N and ĥ2
N from previously completed tasks in

each environment, which can be used to transfer information
to the new task. If the leaner selects the wrong bias parameter,
then the regret of the new task could be larger than that of
the unbiased case (i.e., independent learning of each task). To
handle this issue, MEML-OFUL performs a pure exploration
phase for the first T0 rounds of a new task in order to calculate
the RLS-estimate θ̂N+1,T0

of the new task parameter θN+1.
Then, it chooses the bias parameter that has the smallest square
Euclidean distance from θ̂N+1,T0 . It then runs BIAS-OFUL to
complete the task and update the bias parameter.

We note that the regret grows linearly with the length of
the exploration phase. However, longer exploration allows
the learner to compute more accurate RLS-estimates of the
new task parameter, and hence minimize the misclassification
probability (i.e., selecting the wrong bias parameter), presenting
a design trade-off. Note that even with a perfect estimate of
θN+1, misclassification can still happen as θN+1 might have
non-zero mass in both distributions ρ1, ρ2. As such, we need
to carefully design the length of the pure exploration phase
to be just long enough in order to compute a good estimate
of the task parameter for classification, but not any longer
so as to not adversely affect the regret. After restricting the
class of distribution ρν , our analysis in Theorem 5.1 shows
that we can set the length of the exploration phase such that
it is constant with respect to T and it inversely depends on
the distance between the expected value (µi, i = 1, 2) of the
task distributions (i.e., it captures the difference of the two
environments).

We emphasize that in the case where the new task parameter
θN+1 has a non-zero probability of being sampled from both ρ1

and ρ2, there always exists a non-zero probability that MEML-

OFUL chooses the wrong bias parameter, and hence suffers a
larger regret. Therefore, in order to bound the regret, we need
to compute the probability that MEML-OFUL misclassifies
the environment. To do so, we make the following assumption
on the family of task-distributions we study.

Assumption 5: We assume that for i = 1, 2, the task-
distribution ρi is a multivariate distributions on Rd such that
any sample x ∼ ρi can be written as x = µi+z, where z ∈ Rd
has i.i.d. zero-mean, K-sub-Gaussian entries with a bounded
support in Rd, and µi ∈ Rd is a fixed (but otherwise unknown)
vector. We define the constant γ = ‖µ2 − µ1‖2. Also, we
assume Eθ∼ρi [‖θ − µi‖

2
2]� γ for i = 1, 2.

Then, we employ the biasing idea proposed in [1], which is
based on averaging the RLS-estimate of the task parameters
of the first N completed tasks with labeled environment (i.e.,
θ̂j,T , j = 1, . . . , N ) without considering any bias . In particular,
for a new task N + 1, we set

ĥ1
N+1 =

1

N1

∑
j∈S1

θ̂j,T , ĥ2
N+1 =

1

N2

∑
j∈S2

θ̂j,T . (7)

Then, after the pure exploration phase, the algorithm decides
to use ĥ1

N+1 based on the Euclidean distance from the RLS-
estimate of the new taks parameter (or similarly, ĥ2

N+1).

V. REGRET BOUND

In this section, we show the following bound on the transfer
regret in (5) for MEML-OFUL algorithm.

Theorem 5.1: Let Assumptions 1-5 hold, and let the bias
parameters be defined as in (7). Then, for given prior prob-
abilities P(ν = 1) = p1, P(ν = 2) = p2, the transfer regret
defined in (5) is upper bounded as follows

R(T ) ≤
2∑
i=1

pi(2T0+

dC

√√√√(T − T0) log

(
1 +

(T − T0)2L
(
Variµi + τ iN

)
d

)
)

where T0 > O

(
R
√
d log(4/δ)

γ− 4
√
K2d( 1

N1
+ 1
N2

)−2K
√

log(4/δ)

)
for large

enough N1, N2 such that γ2 ≥ K
√
d( 1
N1

+ 1
N2

), and Variµi =

Eθ∼ρi [‖θ − µi‖
2
2]. Moreover, we have with probability at least

1− δ for δ ∈ ( 1

2e
γ2

4K2

, 1), for i = 1, 2:

√
τ iN =

√∥∥∥µi − ĥN∥∥∥ ≤ O(2S log(2/δ)
√

Eθ∼ρi [‖θ‖
2
2]

Ni

+max
j∈Si
{ βj,T (1/T )√

λ+ λmin(Vj,T )
}+ δ

(
γ +

2S

N

))
. (8)

The last term in RHS of (8) comes from the misclassi-
fication of the environment for the new task. In particular,
as N grows to infinity, the RHS of (8) is dominated by
maxj∈Si{

βj,T (1/T )√
λ+λmin(Vj,T )

} + δγ, where the first term comes

from the variance of the environment ρi and the second term
is caused by the inevitable effect of misclassification of the
environment. We note that the lower bound for the number of



Fig. 1. Transfer regret of MEML-OFUL versus ITL and Oracle algorithm measured after N1 = 10, N2 = 10 training tasks. Left: λ = 1; Middle: λ = 200;
Right: Comparing the transfer regret of our algorithm versus AVG-OFUL and RR-OFUL algorithms from [1] for the mixture distribution with λ = 1.

rounds in the pure exploration phase is constant with respect
to the time T , and it inversely depends on the probability that
MEML-OFUL misclassifies the environment. We have also
shown a lower bound on the number of tasks with a labeled
environment that our algorithm requires in order to reach a
stationary behaviour in estimating the bias.

VI. DISCUSSION

A. When it is beneficial to apply MEML-OFUL?

Defining a mixture distribution ρ = p1ρ1 +p2ρ2 with known
mixing probabilities such that p1 + p2 = 1, one may ask the
question: what happens if we apply the algorithm in [1] to
our multi-environment meta-learning setting? We answer this
question in several steps.

Consider the BIAS-OFUL algorithm in [1] applied to a
new single-environment task-distribution ρ = p1ρ1 + p2ρ2

with expected value µ = p1µ1 + p2µ2. In order to leverage
the task similarities, BIAS-OFUL requires this mixture task-
distribution ρ to satisfy Assumption 4, i.e., that the task-
distribution has a non-zero expected value. Therefore, for any
family of environments such that µ = p1µ1 + p2µ2 = 0
(e.g., µ1 = −µ2 and p1 = p2 = 1/2), BIAS-OFUL would
not necessarily out-perform independent learning. However,
MEML-OFUL will not encounter this problem, since it interacts
with each environment separately, and as long as µ1, µ2 6= 0,
it leverages the task similarities of each environment to bring
substantial benefit with respect to the unbiased case.

Next consider multi-environment settings with µ = p1µ1 +
p2µ2 6= 0. What do we gain from adopting the MEML-OFUL
algorithm over applying the BIAS-OFUL algorithm to the
mixture distribution ρ? To start at a high level, we consider
the case that the meta-learning algorithm perfectly estimates
the bias parameter to be equal to the expected value of the
environment from which the task is sampled. In this case,
Proposition 3.2 shows the following bound on the transfer-
regret of the mixture distribution for BIAS-OFUL:

dC

√√√√T log

(
1 +

T 2L
(
p1Var1µ1

+ p2Var2µ2

)
d

)
, (9)

For the same case, from the result of Theorem 5.1, we obtain
the following bound on the transfer-regret of the MEML-OFUL
algorithm:

R(T ) ≤ p1(2T0 + dC

√
(T − T0) log

(
1 +

T 2LVar1µ1

d

)
)

+ p2(2T0 + dC

√
(T − T0) log

(
1 +

T 2LVar2µ2

d

)
). (10)

Now, we know from Theorem 5.1 that T0 is constant with
respect to the time horizon T , and since the log and square root
functions are strictly concave, we can conclude from Jensen’s
inequality that for a large enough T , the regret bound in (10)
is less than the one in (9). This shows that it cannot hurt to
adopt the MEML-OFUL over the BIAS-OFUL algorithm in
the multi-environment settings if the number of training tasks
N is sufficiently large to provide a close to exact estimate
of expected value for each environment. That being said,
adopting MEML-OFUL has several extra requirements: 1)
MEML-OFUL requires at least N1 + N2 training datasets
of labeled environment such that γ2 ≥ K

√
d( 1
N1

+ 1
N2

) as
stated in Theorem 5.1. Of course, just meeting this minimum
training requirement does not guarantee that MEML-OFUL
would outperform BIAS-OFUL; 2) MEML-OFUL requires
a pure exploration phase to estimate the task environment,
during which it incurs linear regret; 3) MEML-OFUL requires
knowledge of at least a lower bound on γ = ‖µ2 − µ1‖2, since
the length of the pure exploration phase depends on it.

VII. NUMERICAL RESULTS

We investigate numerically the effectiveness of MEML-
OFUL for the meta-learning setting in Section II-C on synthetic
data. As mentioned in Section III, in order to build the
confidence regions, the algorithm requires the value

∥∥∥θi − ĥi∥∥∥
2

which we upper bound similar to [1]. We first generate two
environments in agreement with Assumption 4 such that ρ1

and ρ2 are Gaussian distributions with means µ1 = [1; 1] and
µ2 = [3; 3] and Variµi = 1, i = 1, 2. In all the implementations,
we used T = 70, δ = 1/T,R = 0.1. The transfer-regret figures
are averaged over N = 10 test tasks, where each environment
ρi was sampled with probability pi = 1/2. For the decision
set D, we follow a similar approach to the one in [1]. In
Figure 1 the shaded regions show standard deviation around
the mean. We plot the MEML-OFUL algorithm as well as the
independent task learning (ITL) policy, which completes each
learning task separately. Also, we plot the Oracle policy that
knows the mean of each environment µ1 and µ2. The transfer



regret shown in Fig. 1 (left) are for λ = 1 and Fig. 1 are
for λ = 200. Moreover, we adopt the two proposed algorithm
AVG-OFUL and RR-OFUL proposed in [1] to our setting in
the mixture environment ρ = (ρ1 + ρ2)/2 which is a Gaussian
distribution with mean µ = [2; 2]. Figure 1 (right) shows that
our proposed algorithms out-perform both algorithms in [1],
which supports our discussion in Section VI-A.
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