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Abstract

Machine learning models trained on uncurated datasets can often end up adversely
affecting inputs belonging to underrepresented groups. To address this issue, we
consider the problem of adaptively constructing training sets which allow us to learn
classifiers that are fair in a minimax sense. We first propose an adaptive sampling
algorithm based on the principle of optimism, and derive theoretical bounds on
its performance. We also propose heuristic extensions of this algorithm suitable
for application to large scale, practical problems. Next, by deriving algorithm
independent lower-bounds for a specific class of problems, we show that the
performance achieved by our adaptive scheme cannot be improved in general. We
then validate the benefits of adaptively constructing training sets via experiments on
synthetic tasks with logistic regression classifiers, as well as on several real-world
tasks using convolutional neural networks (CNNs).

1 Introduction

Machine learning (ML) models are increasingly being applied for automating the decision-making
process in several sensitive applications, such as loan approval and employment screening. However,
recent work has demonstrated that discriminatory behaviour might get encoded in the model at various
stages of the ML pipeline, such as data collection, labelling, feature selection, and training, and as a
result, adversely impact members of some protected groups in rather subtle ways (Barocas and Selbst,
2016). This is why ML researchers have started to introduce a large number of fairness measures to
include the notion of fairness in the design of their algorithms. Some of the important measures of
fairness include demographic parity (Zemel et al., 2013), equal odds and opportunity (Hardt et al.,
2016; Woodworth et al., 2017), individual fairness (Dwork et al., 2012), and minimax fairness (Feld-
man et al., 2015). The minimax fairness is particularly important in scenarios in which it is necessary
to be as close as possible to equality without introducing unnecessary harm (Ustun et al., 2019).
These scenarios are common in areas such as healthcare and predicting domestic violence. A measure
that has been explored to achieve this goal is predictive risk disparity (Feldman et al., 2015; Chen
et al., 2018; Ustun et al., 2019). Instead of using the common approach of putting constraints on the
norm of discrimination gaps, Martinez et al. (2020) has recently introduced the notion of minimax
Pareto fairness. These are minimax classifiers that are on the Pareto frontier of prediction risk, i.e., no
decrease in the predictive risk of one group is possible without increasing the risk of another one.

In this paper, we are primarily interested in the notion of minimax fairness in terms of the predictive
risk. However, instead of studying the training phase of the ML pipeline, our focus is on the data-
collection stage, motivated by Jo and Gebru (2019) and Holstein et al. (2018). In particular, we study
the following question: given a finite sampling budget, how should a learner construct a training set
consisting of elements from different protected groups in appropriate proportions to ensure that a
classifier trained on this dataset achieves minimax fairness?

Our work is motivated by the following scenario: suppose we have to learn a ML model for performing
a task (e.g., loan approval) for inputs belonging to different groups based on protected attributes, such
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as race or gender. Depending upon the distribution of input-label pairs from different groups, the
given task may be statistically harder for some groups. Our goal is to ensure that the eventual ML
model has optimal predictive accuracy for the worst-off group. We show that, under certain technical
conditions, this results in a model with comparable predictive accuracy over all groups. One approach
for this would be to train separate classifiers for each group. However, this is often not possible as the
group-membership information may not be available at the deployment time, or it may be forbidden
by law to explicitly use the protected characteristics as an input in the prediction process (Lipton
et al., 2017, § 1). To ensure having a higher proportion of samples from the harder groups without
knowing the identity of the hard or easy groups apriori, we consider this problem in an active setting,
where a learner has to incrementally construct a training set by drawing samples one at a time (or
a batch at a time) from different groups. Towards this goal, we propose and analyze an adaptive
sampling scheme based on the principle of optimism, used in bandits literature (e.g., Auer et al. 2002),
that detects the harder groups and populates the training set with more samples from them in an
adaptive manner. We also wish to note that bias in ML has multi-faceted origins and that our work
here addresses dataset construction and cannot account for bias introduced by model selection, the
underlying data distribution, or other sources as discussed in Hooker (2021), Suresh and Guttag
(2019). We also endeavor to ensure minimax fairness, but in some contexts another notion of fairness,
such as those mentioned above, may be more appropriate or equitable. In general, application of our
algorithm is not a guarantee that the resulting model is wholly without bias.

Our main contributions are: 1) We first propose an optimistic adaptive sampling strategy, Aopt,
for training set construction in Section 3. This strategy is suited to smaller problems and admits
theoretical guarantees. We then introduce a heuristic variant ofAopt in Section 4 that is more suitable
to practical problems involving CNNs. 2) We obtain upper bounds on the convergence rate of Aopt,
and show its minimax near-optimality by constructing a matching lower bound in Section 3.1. 3)
Finally, we demonstrate the benefits of our algorithm with empirical results on several synthetic and
real-world datasets in Section 5.

Related Work. The closest work to ours is by Abernethy et al. (2020), where they propose an
ε-greedy adaptive sampling strategy. They present theoretical analysis under somewhat restrictive
assumptions and also empirically demonstrate the benefits of their strategy over some baselines. We
describe their results in more detail in Appendix C.1, and employ the tools we develop to analyze
our algorithm to perform a thorough analysis of the excess risk of their strategy under a much less
restrictive set of assumptions and to show some necessary conditions on the value of their exploration
parameter, ε. We find comparable empirical results for both algorithms given sufficient tuning of their
respective hyperparameters, we report some of these results in Section 5 and compare the algorithms
in Appendix C. In another related work, Anahideh et al. (2020) propose a fair adaptive sampling
strategy that selects points based on a linear combination of model accuracy and fairness measures,
and empirically study its performance. These results, however, do not obtain convergence rates of the
excess risk of their respective methods and only offer implementations for small-scale datasets.

The above results study the problem of fair classification in an active setting and target the data-
collection stage of the ML pipeline. There are also works that take a passive approach to this problem
and focus of the training phase of the pipeline. Agarwal et al. (2018) design a scheme for learning
fair binary classifiers with fairness metrics that can be written as linear constraints involving certain
conditional moments. This class of fairness metrics, however, do not contain the minimax fairness
measure. Diana et al. (2021) propose a method for constructing (randomized) classifiers for minimax
fairness w.r.t. the empirical loss calculated on the given training set. Similarly, Martinez et al. (2020)
derive an algorithm for learning a Pareto optimal minimax fair classifier, under the assumption that
the learner has access to the true expected loss functions. Thus, the theoretical guarantees in Diana
et al. (2021) and Martinez et al. (2020) hold under the assumption of large training sets. Our work,
in contrast, constructs the training set incrementally (active setting) from scratch while carefully
taking into account the effects of the finite sample size. Finally, we note that the data-collection
strategies proposed in our paper can, in principle, be combined with the training methods presented
in Martinez et al. (2020) and Diana et al. (2021) to further guarantee the (minimax) fairness of the
resulting classifier. We leave the investigation of this approach for future work.

Besides data-collection and training, there have been studies in the fair ML literature on other aspects
of the ML pipeline, such as pre-processing (Celis et al., 2020), learning feature representations (Zemel
et al., 2013), post-processing (Hardt et al., 2016), and model documentation (Mitchell et al., 2018).
We refer readers to a recent survey by Caton and Haas (2020) for detailed description of these results.
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2 Problem Formulation
Consider a classification problem with the feature (input) space X , label set Y , and a pro-
tected attribute set Z = {z1, . . . , zm}. For any z ∈ Z , we use Pz(x, y) as a shorthand for
PXY |Z=z (X = x, Y = y | Z = z) to denote the feature-label joint distribution given that the pro-
tected feature value is Z = z. We also use Ez[·] as a shorthand for the expectation w.r.t. Pz . A
(non-randomized) classifier is a mapping f : X 7→ Y , which assigns a label y ∈ Y to every feature
x ∈ X . For a family of classifiers F ⊂ YX , a loss function ` : F × X × Y 7→ R, and a mixture
distribution over the protected attributes π ∈ ∆m, we define the π-optimal classifier fπ as

fπ ∈ arg min
f∈F

Eπ [`(f,X, Y )] :=
∑
z∈Z

π(z) Ez [`(f,X, Y )] . (1)

When π lies on the corners of the simplex ∆m, i.e., π(z) = 1 for a z ∈ Z , we use the notation
fz instead of fπ. For π in the interior of ∆m, it is clear that the risk of fπ on group z, i.e.,
Ez [`(fπ, X, Y )], must be larger than the best possible classification loss for PXY |Z=z . In this paper,
our goal is to develop an active sampling scheme to find the fair mixture distribution π∗ in a minimax
sense (minimizing the maximum risk among the groups), i.e.,

π∗ ∈ arg min
π∈∆m

max
z∈Z

L(z, fπ) := Ez [`(fπ, X, Y )] . (2)

The active sampling problem that we study in this paper can be formally defined as follows:
Problem 1. Suppose F denotes a family of classifiers, ` a loss function, n is a sampling budget, and
O : Z 7→ X ×Y an oracle that maps any attribute z ∈ Z to a feature-label pair (X,Y ) ∼ PXY |Z=z .
The learner designs an adaptive sampling scheme A that comprises a sequence of mappings (At)

n
t=1

with At : (X × Y)t−1 7→ Z to adaptively query O and construct a dataset of size n. Let πn ∈ ∆m

denote the resulting empirical mixture distribution over Z , where πn(z) = Nz,n/n and Nz,n is the
number of times that A samples from Pz in n rounds. Then, the quality of the resulting dataset is
measured by the excess risk, or sub-optimality, of the πn-optimal classifier fπn , i.e.,

Rn (A) := max
z∈Z

L (z, fπn) − max
z∈Z

L(z, fπ∗) , (3)

where π∗ is the fair mixture distribution defined by (2). Hence, the goal of the learner is to design a
strategy A which has a small excess riskRn(A).

Informally, the algorithm should adaptively identify the harder groups z and dedicate a larger portion
of the overall budget n to sample from their distributions (see Section 2.2 for an illustrative example).

2.1 Properties of the Fair Mixture
As discussed above, our goal is to derive an active sampling scheme that allocates the overall budget
n over the attributes z ∈ Z in a similar manner as the unknown fair mixture π∗, defined by (2). Thus,
it is important to better understand the properties of π∗ and the π-optimal classifiers fπ, defined
by (1). We state three properties of fπ and π∗ in this section. We refer the readers to Martinez et al.
(2020) for the definitions of Pareto front and convexity discussed in this section.

Property 1. As discussed in Martinez et al. (2020, Section 4), any fπ that solves (1) for a π with
π(z) > 0, ∀z ∈ Z , belongs to the Pareto front PZ,F of the risk functions {L(z, f)}z∈Z , ∀f ∈ F .

Property 2. We prove in Proposition 1 (see Appendix A for the proof) that under the following two
assumptions on the conditional distributions {Pz}z∈Z , function class F , and loss function `, there
exists a unique fair mixture π∗, whose classifier fπ∗ has equal risk over all attributes z ∈ Z .
Assumption 1. The mapping π 7→ L(z, fπ) is continuous for all attributes z ∈ Z . Furthermore, if
π, ν ∈ ∆m are such that π(z) > ν(z) for an attribute z ∈ Z , then L(z, fπ) < L(z, fν).

The above assumption indicates that increasing the weight of an attribute z in the mixture distribution
must lead to an increase in the performance of the resulting classifier on the distribution Pz .
Assumption 2. For any two distinct attributes z, z′ ∈ Z , we must have L(z, f∗z ) < L(z′, f∗z ), for
any f∗z ∈ arg minf∈F L(z, f).

This assumption requires that any optimal classifier corresponding to distribution Pz to have higher
risk w.r.t. the distribution Pz′ of any other attribute z′ ∈ Z . Note that Assumption 2 may not always
hold, for example, if one attribute is significantly easier to classify than another.
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Proposition 1. Let Assumptions 1 and 2 hold for the conditional distributions {Pz}z∈Z , the loss
function `, and the function class F . Then, there exists a unique π∗ ∈ ∆m that achieves the optimal
value for problem (2) and satisfies L(z1, fπ∗) = L(z2, fπ∗) = · · · = L(zm, fπ∗) := M∗.

In other words, Assumptions 1 and 2 define a regime where there exists a fair mixture π∗, whose
classifier fπ∗ achieves complete parity in the classification performance across all attributes. More-
over, Property 1 indicates that fπ∗ also belongs to the Pareto front PZ,F . Therefore, under these two
assumptions, the equal risk classifier not only belongs to the Pareto front, but it is also the minimax
Pareto fair classifier (Lemma 3.1 in Martinez et al. 2020). Note that, in general, without Assumption
1, the classifier that attains equality of risk might have worse performance on all attributes than the
minimax Pareto fair classifier (Lemma 3.2 in Martinez et al. 2020).

Property 3. We may show that when both the function class F and risk functions {L(z, ·)}z∈Z
are convex, fπ∗ is a minimax Pareto fair classifier. As originally derived by Geoffrion (1968) and
then restated by Martinez et al. (2020, Theorem 4.1), under these convexity assumptions, the Pareto
front PZ,F is convex and any classifier on PZ,F is a solution to (1). This together with Property 1
indicates that the classifier fπ∗ corresponding to the fair (minimax optimal) mixture π∗ is on the
Pareto front, and additionally, is a minimax Pareto fair classifier.

2.2 Synthetic Models

It is illustrative to consider a class of synthetic models which we use as a running example.

Definition 1 (SyntheticModel1). Set X = R2, Y = {0, 1}, and Z = {u, v}. Each instance
of our synthetic model is defined by the set of distributions PXY |Z that satisfy the following:
PY |Z(Y = 1|Z = z) = 0.5 for both z ∈ Z , and PX|Y=y,Z=z = N (µyz, I2) for all (y, z) ∈ Y × Z .
Thus, each instance of this model can be represented by a mean vector µ = (µyz : y ∈ Y, z ∈ Z).

The idea behind this class of models is that the ‘hardness’ of the classification problem for a value of
z ∈ Z depends on the distance between µ0z and µ1z . The more separated these two mean vectors
are, the easier it is to distinguish the labels. Thus, depending on this distance, it is expected that
different protected attributes may require different fractions of samples in the training set to achieve
comparable test accuracy. To illustrate this, we consider two instances of the SyntheticModel1:
I. µ0u = (−2, 2), µ1u = (2,−2), µ0v = (−1,−1), and µ1v = (1, 1), and II. µ0u = (−1.5, 1.5),
µ1u= (1.5,−1.5), µ0v = (−2,−2), and µ1v = (2, 2).

For both model instances, we trained a logistic regression classifier over training sets with 1001
equally spaced values of π(u) in [0, 1]. Figure 1 shows the test accuracy of the learned classifier for
both attributes (blue and red curves) as well as their minimum (black curve) for different values of
π(u). Since the pair (µ0u, µ1u) is better separated than (µ0v, µ1v) in the first instance, it is easier to
classify inputs with Z = u than those with Z = v, and thus, it requires fewer training samples from
Pz=u than Pz=v to achieve the same accuracy. This is reflected in Figure 1 (left) that shows the best
(min-max) performance is achieved at π(u) ≈ 0.23. An opposite trend is observed in the second
instance (right plot in Figure 1), where the mean vectors corresponding to the attribute Z = v are
better separated, and hence, require fewer training samples to achieve the same accuracy.

Figure 1: The variation of the minimum prediction accuracy over the two attributes Z = {u, v} with
π(u) for Instance I, on the left, and Instance II, on the right, of the SyntheticModel1.

4



3 Optimistic Adaptive Sampling Strategy
In this section, we present our optimistic adaptive sampling algorithm Aopt for Problem 1. Al-
gorithm 1 contains a simple pseudo-code for Aopt, see Algorithm 2 for a more detailed, formal
pseudo-code. The algorithm proceeds in the following phases:

Phase 1. In the initial phase t ≤ m = |Z|, we draw two independent samples from Pz = PXY |Z=z ,
for each attribute z ∈ Z , and add one to the training dataset Dt and the other one to Dz . We use
Dt to learn a common (over all z ∈ Z) classifier f̂t via empirical risk minimization (ERM). The
independent datasets {Dzi}mi=1 are used for estimating the performance of f̂t for each z ∈ Z .

Algorithm 1: Optimistic Adaptive Sam-
pling for Minimax Fair Classification.

Input: n (budget), F (function class),
` (loss function), ξ (forced
exploration term)

1 Initialize: D1 = ∅; {Dzi}mi=1 = ∅;
{Nzi,1}mi=1 = 0;

2 for t = 1, . . . , n/2 do
3 if t ≤ m then
4 zt = zt;
5 else if minz∈Z Nz,t < tξ then
6 zt ∈ arg minz∈Z Nz,t;
7 else
8 zt = arg maxz∈Z Ut(z, f̂t);

// see Equation 4
9 end

10 Draw two independent samples from
Pzt ;

11 Add the first one to Dt and the second
one to Dzt ;

12 Update Nzt,t; πt; ezt(Nzt,t);
13 Learn classifier f̂t by ERM using Dt;
14 end

Output: πn/2 and f̂n/2

Phase 2. In each round t > m, we choose an
attribute zt according to the following selection
rule: if there exists an attribute z whose num-
ber of samples in Dt, denoted by Nzt,t, is fewer
than tξ for some input ξ ∈ (0, 1) (Line 5), we
set it as zt (Line 6), else we set zt as the attribute
which has the largest upper confidence bound
(UCB) (described below) for the risk of the clas-
sifier fπt (Line 8). Here πt denote the empirical
mixture distribution (over the attributes z) ofDt.
Phase 3. When the attribute zt is selected in
Phase 2, the algorithm draws a pair of inde-
pendent samples from Pzt , adds one to Dt and
the other to Dzt , and updates Nzt,t, πt, and the
uniform deviation bound ezt(Nzt,t) (described
below) (Lines 10 to 12). The updated datasetDt
is then used to learn a new candidate classifier
f̂t (Line 13). Phases 2 and 3 are repeated until
the sampling budget is exhausted, i.e., t = n/2
(note that we sample twice at each round).

Calculating UCB. To construct the UCB, we
introduce two additional assumptions:

For stating the next assumption, we will use
the notations L(z, f) = Ez [`(f,X, Y )] and
L(π, f) =

∑
z∈Z π(z)L(z, f) for any f ∈ F ,

z ∈ Z and π ∈ ∆m.
Assumption 3. There exist positive constants ε0, C > 0 such that for any function f ∈ F and any
π ∈ ∆m, with π(z) > 0, ∀z ∈ Z , if we have L(π, f) ≤ L(π, fπ) + ε, for some 0 < ε ≤ ε0, then
π(z)× |L(z, f)− L(z, fπ)| ≤ 2Cε, ∀z ∈ Z .

Assumption 3 is stated in abstract terms, so Example 1 describes a problem for which it holds.
Example 1. Consider the binary classification problem, with X = [0, 1]k and Y = {0, 1} and
Z = {z1, . . . , zm}. Let F be the given family of classifiers f : X → Y , and introduce d(f1, f2) =
µ({f1 6= f2}), where µ is the Lebesgue measure on X . Assume that the marginal distributions
PX|Z=z for all z ∈ Z admit densities νz with respect to µ satisfying C1 ≤ νz(x) ≤ C2 for all x ∈ X .
Note that this is a version of the strong-density assumption used in prior works in classification, such
as (Audibert and Tsybakov, 2007, Definition 2.2). Then, for the `01 loss, we observe that the expected
loss between any two f1, f2 satisfies C1d(f1, f2) ≤ |L(z, f1)− L(z, f2)| ≤ C2d(f1, f2).

As a result of this, for any π ∈ ∆m and f ∈ F , we have C1d(f, fπ) ≤ L(π, f) − L(π, fπ) ≤
C2d(f, fπ). Therefore, if it is known that L(π, f) − L(π, fπ) ≤ ε, then we can conclude that we
must have d(f, fπ) ≤ ε/C1. Hence, by the strong-density assumption on PX|Z=z we have that
π(z)× |L(z, f)− L(z, fπ)| ≤ 1× C2d(f, fπ) ≤ (C2/C1)ε := 2Cε.

Our final assumption is a standard uniform convergence requirement which is satisfied by many
commonly used families of classifiers (several examples are detailed in Remark 1).
Assumption 4. Let δ ∈ [0, 1] be a confidence parameter. For each z ∈ Z , there exists a monotoni-
cally non-increasing sequence, {ez(N,F , δ) : N ≥ 1}, with limN→∞ ez(N,F , δ) = 0, such that
the following event holds with probability at least 1− δ/2:
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Ω =
⋂
z∈Z

∞⋂
N=1

{
sup
f∈F

∣∣L̂N (z, f)− L(z, f)
∣∣ ≤ ez(N,F , δ)},

where L̂N (z, f) := 1
N

∑N
i=1 `

(
f,X

(i)
z , Y

(i)
z

)
, ∀z ∈ Z , with

(
X

(i)
z , Y

(i)
z

)N
i=1

being an i.i.d. se-
quence of input-label pairs from Pz .

In what follows, we will drop the F and δ dependence and refer to ez(N,F , δ) as ez(N) for all
z ∈ Z and N ≥ 1. Given an appropriate sequence of ez(N), we construct the UCB for the risk
function L(z, fπt), defined by Equation (2), with the following expression:

Ut(z, f̂t) :=
1

|Dz|
∑

(x,y)∈Dz

`(f̂t, x, y) + ez (Nz,t) +
2C

πt(z)

∑
z′∈Z

πt(z
′)ez′(Nz′,t) . (4)

Where C is the constant described in Assumption 3. The first term on the RHS is the empirical loss of
the learned classifier at round t on attribute Z = z, so by Assumption 4 the first two terms of the RHS
of Equation 4 give a high probability upper bound on L(z, f̂t), the expected loss of f̂t conditioned on
Z = z. The third term then provides an upper bound on the difference |L(z, fπt)− L(z, f̂t)| and so
altogether this provides the desired UCB on the expected loss of the πt optimal classifier on attribute
Z = z. The form of the third term is due to Assumption 3 and is discussed in detail in Appendix B.1.

3.1 Theoretical Analysis
In this section, we derive an upper-bound on the excess risk Rn(Aopt) of Algorithm 2. We also
show that the performance achieved this algorithm cannot in general be improved, by obtaining an
algorithm independent lower-bound on the excess risk for a particular class of problems.

Upper Bound. We begin by obtaining an upper bound on the convergence rate of the excess risk of
Aopt, the proof of this result is in Appendix B.1.
Theorem 1. Let Assumptions 1-3 hold and define πmin := minz∈Z π

∗(z). Fix any A such that
πmin/2 ≤ A < πmin. Suppose the query budget n is sufficiently large, as defined in Equation 19 in
Appendix B.1. Then, with probability 1− δ, the excess risk of Algorithm 2 can be upper-bounded as

Rn(Aopt) = max
z∈Z

L(z, fπn)−M∗ = O
( |Z|C
πmin

max
z∈Z

ez(NA)
)
, (5)

where M∗ = L(z, fπ∗), ∀z ∈ Z (see Proposition 1) and NA = nπ2
min/(2πmin −A).

Remark 1. The uniform deviation bounds, ez(N), defined in Assumption 4 and the bound on the
excess risk of Algorithm 2 (see Equation 5) can be instantiated for several commonly used classifiers
(function classes F ) to obtain an explicit convergence rate in n. If F has a finite VC-dimension, dV C ,
then a suitable deviation bound is ez(N) = 2

√
(2dV C log (2eN/dV C) + 2 log (2N2π2|Z|/3δ)) /N ,

where here π is the numerical constant. And if F has Rademacher complexity Rn, we can choose
ez(N) = 2RN +

√
log (N2π2|Z/3δ) /N . Furthermore, with these uniform deviation bounds and if

Rn is O (n−α), for some α > 0, then we obtain excess risk bounds of

Rn(Aopt) = O
( |Z|C
π1.5
min

√
dV C
n

)
, Rn(Aopt) = O

( |Z|C
π1+α
min n

α

)
,

for the VC-dimension and Rademacher cases, respectively. These conditions on F are satisfied by
several commonly used classifiers, such as linear, SVM, and multi-layer perceptron.
Remark 2 (Analysis of ε-greedy). Abernethy et al. (2020) only analyze the greedy version (i.e., ε =
0) of their ε-greedy sampling strategy with |Z| = 2, and show that at time n, either the excess risk
is of O

(
maxz∈Z

√
2dV C(`◦F) log(2/δ)/Nz,n

)
, or the algorithm draws a sample from the attribute with

the largest loss. However, due to the greedy nature of the algorithm they analyzed, there are no
guarantees that Nz,n = Ω(n), and thus, in the worst case the above excess risk bound is O(1). We
show in Appendix C how the techniques we developed for the analysis of Algorithm 2 can be suitably
employed to study their ε-greedy strategy. In particular, we obtain sufficient conditions on ε under
which the excess risk of ε-greedy converges to zero, and the rate at which this convergence occurs.
Remark 3 (Comparison between Aopt and ε-greedy). Aopt holds two primary advantages over
ε-greedy, these are discussed in detail in Appendix C, but briefly Aopt has superior risk guarantees,
by a constant factor. And both algorithms depend on tunable parameters: C for Aopt and ε for
ε-greedy, butAopt is far more robust to the choice of parameter. Figure 9 in Appendix C illustrates a
case where poor choice of ε can prevent ε-greedy from converging to the optimal mixture distribution
for any number of samples. This robustness makes Aopt easier to employ in practical settings.
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Lower Bound. LetQ = (µ,F , `01) denote the class of problems where µ ∈M is an instance of the
SyntheticModelI described in Section 2.2,F is the class of linear classifiers in two dimensions, and
`01 is the 0−1 loss. For this function classF , ez(N) = O(

√
log(N)/N) for z ∈ Z = {u, v}, which

implies that the excess risk achieved by both Aopt and ε-greedy strategies is of O
(√

log(n)/n
)

.
We prove in Appendix D that this convergence rate (in terms of n) cannot in general be improved by
showing that maxQ∈Q EQ [Rn (A)] = Ω (1/

√
n).

4 Heuristic Extensions
We show in Appendix B.1.1 that if the uniform deviation bounds, ez(N), can be chosen to decrease to
zero sufficiently quickly as N increases, then we can omit the C dependent third term in Equation (4)
and still attain the same regret bounds given in Theorem 1. The resulting two-term UCB is then
only the high probability upper bound on L(z, f̂t). We will use this UCB as the basis for several
practical modifications to our optimistic adaptive sampling strategy. First we note that in UCB
based algorithms the confidence bounds necessary to attain theoretical results often do not produce
optimal empirical results–see, for example, Section 6 in Srinivas et al. (2009). So, following standard
practice, we introduce a hyperparameter, c0, in Equation (6) below, which we can tune to optimize
the exploration/exploitation trade-off.

Practical applications of our strategy run into two further challenges. As described in Section 3,
Aopt requires re-training the classifier in every iteration. While this can be implemented in small
problems, it becomes infeasible for problems involving large models, such as CNNs. Also, as noted
in Section 2.1, for data where one attribute is significantly easier than the other, Assumption 2 may
not hold. In this case it may not be beneficial to continue to sample from the attribute with the largest
loss. To address these issues we present a heuristic variant of Algorithm 2.

For the first challenge we make the following modifications to Algorithm 2. 1) We expand Phase 1 to
n0 rounds, 2) at each subsequent round we draw two batches of size b0 from the chosen attribute, 3)
instead of re-training from scratch each round, we update the previous model, f̂t−1, and 4) instead of
training to convergence, we perform one gradient step over the entire accumulated training set, Dt.
To address the second challenge we modify the UCB by adding a term based on the Mann-
Kendall statistic (Mann, 1945) (Kendall, 1948) which, for time series data (Xi)

n
i=1, is given by

S =
∑n−1
i=1

∑n
j=i+1 sgn (Xj −Xi) . This is designed to identify monotonic upwards or downward

trends in time series. We calculate the statistic for each attribute, and denote it Szt , for the accuracy of
the classifier, f̂t, on the attribute’s validation set, Dzt , over time. Intuitively, this is tracking whether
training on additional samples from an attribute is improving the classifier’s accuracy on that attribute.
We incorporate the statistic into the UCB as follows:

Ũt(z, f̂t) :=
1

|Dz|
∑

(x,y)∈Dz

`(f̂t, x, y) +
c0√
Nz,t

+ c1
Szt√

var(Szt)
, (6)

to incentivize the algorithm to sample attributes on which accuracy is increasing. c1 is a free
parameter controlling the importance of per-attribute loss trends. We note that the general ability
to modify the UCB in this manner is a strength of our algorithm, as it allows for a great deal of
interpretability and adaptability in practical applications.
The parameters c0, c1, n0, and b0 are chosen based on the specific problem and available computa-
tional resources. We describe our selection of these terms Appendix E. In the experiments we will
refer to the variant of this algorithm with c1 = 0 as Aopt, and the variant with c1 > 0 as Aopt+.

5 Empirical Results
We evaluate the performance of our proposed active sampling algorithm Aopt on both synthetic
and real datasets, and compare it with the following baselines: 1) ε-greedy scheme of Abernethy
et al. (2020), 2) Greedy scheme, which is equivalent to ε-greedy with ε = 0, 3) Uniform, where
an equal number of samples are drawn for each attribute, and 4) Uncurated, where samples are
drawn according to the natural distribution of the dataset. We note that, for some datasets, the natural
distribution is uniform, for those we omit the results for the Uncurated scheme.

We will make the code for these experiments available in the supplemental materials. All experiments
were run for multiple trials–the number of which is indicated in the results–and we report the average
over trials with shaded regions on plots indicating ±1 standard deviation. Experiments for image
datasets were run on a single GPU provided by Google Colab or other shared computing resources.
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Figure 2: The figure shows the convergence of πn(u) for the three algorithms Aopt, ε-greedy (with
ε = 0.1) and Empirical (i.e., ε-greedy with ε = 0), to the optimal value π∗(u) for the two instances
of the SyntheticModel1 introduced in Section 2.2.

Synthetic Dataset. In this experiment, we compare how the πn(u) returned by the different algo-
rithms converge to π∗(u) for the two synthetic models introduced in Section 2.2 with F chosen as the
family of logistic regression (LR) classifiers. Since the feature space is two dimensional, we use the
version of Aopt, ε-greedy, and Empirical schemes in which we train (from scratch) the classifier
in each round. For Aopt, we use UCB given in 6 with c0 = 0.1 and for ε-greedy, we use ε = 0.1.
These values of c0 and ε are selected via a grid search.
Figure 2 shows how πn(u) changes with n for the three algorithms averaged over 100 trials. As ex-
pected, the algorithms with an exploration component (i.e., Aopt and ε-greedy) eventually converge
to the optimal π∗(u) value in both cases, whereas the Empirical scheme that acts greedily often
gets stuck with a wrong mixture distribution, resulting in high variability in its performance.

Adult Dataset. For the remaining experiments we find that, for properly tuned values of ε and c0,
both Aopt and ε-greedy attain comparable minimum test error. So we omit the ε-greedy results for
the purpose of clarity, see Appendix C for a detailed comparison of the two algorithms.
We now analyze the performance of the remaining algorithms on a dataset from the UCI ML
Repository (Dua and Graff, 2017) that is commonly used in the fairness literature: the Adult dataset.
It is a low dimensional problem, so we use LR classifiers and the exact version of each sampling
algorithm, where the optimal classifier is computed with each new sample.
We set Z to be white men, non-white men, white women, and non-white women. The minimum
test accuracy over all attributes at each iteration is displayed in Figure 3a. Each sampling scheme
approaches 80.5% accuracy as sample size grows, this matches the results achieved under the LR
algorithms reported in Table 4a) in Martinez et al. (2020). This is the maximum accuracy an LR
classifier can achieve on the white male sub-population in isolation and so additional sampling, or
other fairness algorithms, cannot improve on this performance in a minimax sense. We do note,
however, that the adaptive algorithms hold a sizable advantage over Uniform at small sample sizes.

Image Datasets. We also compare the performance of the different sampling schemes on larger
scale problems and more complex hypothesis classes. To this end we use three image datasets:
UTKFace (Zhang et al., 2017), FashionMNIST (Xiao et al., 2017), and Cifar10 (Krizhevsky and
Hinton, 2009) with CNNs. We use the heuristic variants of the Aopt, with c1 = 0, and Greedy
algorithms with batch sizes of 50. The CNN architecture, data transforms, and further algorithm
parameters are detailed in Appendix E.

Figure 3: Left: Minimum test accuracy over all attributes for Adult dataset as a function of the
sampling budget n, averaged over 10 trials for Adult. Right: Mixture distribution learned by Aopt
over 500 training rounds on FashionMNIST.
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Figure 4: Minimum test accuracy, over all attributes, for both FashionMNIST and UTKFace as a
function of the time step t, averaged over 10 trials.
The UTKFace dataset consists of face images annotated with age, gender, and ethnicity. We choose
Y = {Male,Female} and setZ to the five ethnicities. The minimum test accuracy, over all attributes,
is shown in Figure 4b and demonstrates a clear separation between the adaptive algorithms and both
Uniform and Uncurated sampling. Uncurated does particularly poorly in the low sample regime
here, in contrast with the Adult dataset, where Uncurated performed comparably to the adaptive
algorithms. This is because, for Adult dataset, the lowest accuracy attribute is over-represented in the
dataset with white men at 63% of all samples. Whereas, for UTKFace, the accuracy was lowest for
Asian people, who are under-represented in the available data at only 14% of all samples.

The other two datasets, FashionMNIST and Cifar10, were chosen to provide a controlled setting
to demonstrate the existence of hard and easy attributes on real-world data. For both, we divide
the labels into 5 pairs and assign each an "attribute". The pairs were chosen according to existing
confusion matrices to have pairs that are both easy and hard to distinguish from each other, see
Appendix E for more details.

For FashionMNIST, each pair in Figure 3b is one attribute and within each pair one item is assigned
Y = 0 and the other Y = 1. Then a single binary CNN classifier is learned simultaneously over all
5 pairs. Figure 3b shows the mixture distribution generated by the Aopt sampling scheme, which
allocated the vast majority of samples to the (Tshirt, Shirt) and (Pullover, Coat) pairs. This makes
intuitive sense, since both pairs of items are qualitatively very similar to each other, and aligns with
common confusion matrices which indicate that those items are frequently misclassified as each other
by standard classifiers. Figure 4a displays the worst case accuracy for each scheme on FashionMNIST
as a function of time step and shows that both adaptive algorithms outperform Uniform sampling
throughout the training process. Finally, Figure 5 shows the test accuracy on each attribute for both
Aopt and Uniform sampling schemes. Aopt maintains a much smaller spread between the accuracy
over different attributes. This equity is particularly desirable from a fairness perspective as it ensures
no attribute has a large advantage over any other in the sense of expected accuracy. It also validates
our assumption that the optimal distribution will tend to equalize the losses across attributes in real
world data.

Final accuracy for all experiments, per-attribute accuracy for UTKFace, all results for CIFAR10, and
details of the Adult dataset are included in Appendix E, along with results for the German dataset,
another UCI ML Repository dataset.

Figure 5: Test accuracy for each attribute in FashionMNIST as a function of the time step, t, for both
Aopt and Uniform sampling schemes, averaged over 10 trials.
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Figure 6: Test accuracy as a function of sampling budget for both attributes from the dataset shown
in Fig. 7, averaged over 100 trials.
Empirical results when Assumption 2 is violated.
Finally, we consider the case where our assumption of a unique, risk equalizing mixture distribution
may not hold. The practical effects of this situation can be seen in the Adult dataset where additional
samples of the white male attribute show diminishing returns, while other attributes can attain higher
accuracy given more samples. In such a scenario, each adaptive algorithm will continue to select
samples mainly from the worst case group despite this granting little improvement in performance.

Figure 7: An instance of
SyntheticModel2with attribute Z = u
shown in red and Z = v shown in blue.

To evaluate this scenario we introduce a second syn-
thetic data model: an instance of SyntheticModel2
is illustrated in Figure 7 and specified in detail in
Definition 4 in Appendix E. In this model we create
one attribute, shown in red, which allows a relatively
small maximal accuracy that can be attained with few
samples. In contrast, the blue attribute can be classi-
fied with high accuracy given few sample, as the bulk
of its mass is in the central, separable clusters shown
in the figure. But classification of this attribute also
benefits from many additional samples as the sparser
regions in the top left and bottom right are explored.
In this setting, constantly sampling from the attribute
with the lowest empirical accuracy is inadvisable as
additional samples of the red attribute cannot increase
its accuracy, while additional samples of the blue attribute can increase its accuracy.

We compared the performance of Aopt+, the heuristic variation of our algorithm with a trend-based
statistic included, Aopt, and Greedy on SyntheticModel2. Figure 6 shows the results, each of the
three algorithms achieves similar minimax accuracy and performs worst on attribute Z = u, shown
in red in Figure 7. But Aopt+ achieves 4 points higher average accuracy than both Greedy and Aopt
with the original UCB on the other attribute, Z = v. This demonstrates that the additional term in
the Aopt+ UCB is effective at recognizing when the hardest group is not benefiting from additional
training samples and redistributing them more effectively.
6 Conclusion
We considered the problem of actively constructing a training set in order to learn a classifier
that achieves minimax fairness in terms of predictive loss. We proposed a new strategy for this
problem (Aopt) and obtained theoretical guarantees on its performance. We then showed that the
theoretical performance achieved byAopt and ε-greedy (Abernethy et al., 2020) cannot be improved
in general, by obtaining algorithm independent lower-bounds for the problem.
Our experiments demonstrated that adaptive sampling schemes can achieve superior minimax risk
[Fig. 3a, Fig. 4] and smaller disparity between per-attribute risks [Fig. 5] compared to both uniform
and uncurated schemes. The results in Fig. 2 show the necessity of exploration, as purely greedy
algorithms can converge to sub-optimal mixture distributions. And finally Fig. 6 shows the versatility
of our general UCB-based strategy in its ability to readily incorporate new terms to accommodate the
practical challenges posed by real-world problems.
Our theoretical results rely on the existence of a unique risk equalizing mixture distribution π∗, a
condition that may not always hold. Thus, an important future work is to relax this assumption, and to
design and analyze algorithms that identify pareto optimal mixture distributions that achieve minimax
fairness. Another important direction is to derive and analyze active sampling strategies for other
fairness measures.
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A Proof of Proposition 1

Proof. First we note that there must exist at least one optimum mixture distribution π∗ since by the
Assumption 1, the objective function is continuous and the domain of optimization, ∆m, is compact.
We also note that any optimal π∗ must lie in the interior of the simplex ∆m as a consequence of
Assumption 2 (this follows by contradiction).

Next, we show that any such π∗ must equalize the L(z, fπ∗ := Ez [` (fπ∗ , X, Y )] for all z ∈ Z .
Indeed, assume that this is not the case and enumerate the elements of Z as z1, . . . , zm in decreasing
order of L(z, fπ∗) value. Also introduce % to denote minz 6=z1 L(z1, fπ∗)− L(z, fπ∗) and (for now)
assume that % > 0.

Now define πε as follows: πε(z) = π∗(z) for z ∈ Z ′ := Z \ {z1, zm}, πε(z1) = π∗(z1) + ε and
πε(zm) = π∗(zm)− ε. Due to the continuity assumption on the mapping π 7→ L(z, fπ) for all z ∈ Z
in Assumption 1, we note that there exists ε0 < πmin := minz∈Z π

∗(z), such that for all z 6= z1 we
have L(z, fπε) ≤ L(z1, fπ∗) − %/2 for all ε ≤ ε0. Note that πmin must be strictly greater than 0,
since π∗ lies in the interior of ∆m. Finally, due to the monotonicity assumption in Assumption 1,
there must exist %1 > 0 such that L(z1, fπε0 ) = L(z1, fπ∗) − %1 < L(z1, fπ∗). Together, these
results imply that

max
z∈Z

L(z, fπε0 ) ≤ max{L(z1, fπ∗)− %/2, L(z1, fπ∗)− %1} < L(z1, fπ∗),

thus contradicting the optimality assumption on π∗. This completes the proof of the statement that
any optimal π∗ must ensure that L(z, fπ∗) = L(z′, fπ∗) for all z, z′ ∈ Z .

Finally, the fact that L(z, fπ∗) = L(z′, fπ∗) for any optimal π∗ also ensures the uniqueness of the
optimum mixture distribution. Again, assume that this is not the case and there exists another optimal
π̃∗ 6= π∗ achieving optimum value in (1). Then there must exist a z such that π(z) 6= π∗(z), and hence
L(z, fπ∗) 6= L(z, fπ̃∗). Hence, by Assumption 1, we have maxz∈Z L(z, fπ∗) 6= maxz∈Z L(z, fπ̃∗),
which contradicts our hypothesis that both π∗ and π̃∗ achieve the optimum value in (2). This
concludes the proof of the uniqueness of π∗.

B Details of Algorithm 2

The detailed pseudo-code of Aopt is given in Algorithm 2.

B.1 Proof of Theorem 1

Recall the UCB first defined in Equation 4:

Ut(z, f̂t) :=
1

|Dz|
∑

(x,y)∈Dz

`(f̂t, x, y) + ez (Nz,t) +
2C

πt(z)

∑
z′∈Z

πt(z
′)ez′(Nz′,t)︸ ︷︷ ︸

:=ρt

. (7)

With the parameter C as defined in Assumption 3 and sequences ez(N) satisfying Assumption 4.

Before proceeding further, we introduce the following notation:

• For any z ∈ Z and at any time t ≤ n, we use Nz,t to refer to the number of samples drawn
corresponding to the feature z prior to time t, i.e., Nz,t =

∑t−1
i=1 1{zi=z}.

• L̂t(z, f) = 1
Nz,t

∑
(x,y)∈D(z)

`(f, x, y), denotes the empirical risk of a classifier f on the
samples corresponding to attribute z,

• L(z, f) = Ez [`(f,X, Y )] denotes the population risk of classifier f corresponding to
attribute z.

• ρt =
∑
z∈Z πt(z)ez,Nz,t will be used to quantify the uniform deviation of the classifier f̂t

from the corresponding optimal classifier fπt . Recall that πt is the mixture distribution of
the |Z| attributes at time t constructed by the algorithm, i.e., πt(z) =

Nz,t
t for z ∈ Z .
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Algorithm 2: Optimistic Sampling for Fair Classification (Aopt)

Input: n (budget), F (function class), ` (loss function), ξ ∈ (0, 1) (forced exploration term)
1 Initialize: D0 = ∅; ez,1 = +∞ and D(z) = ∅, for all z ∈ Z;
/* Draw two independent samples from each z ∈ Z */

2 for t = 1, . . . ,m do
3 z ← zt ∈ Z;

4
(
X

(i)
t , Y

(i)
t

)
i=1,2

∼ Pz; D(z) = {(X(1)
t , Y

(1)
t )}; Dt ← Dt−1 ∪ {(X(2)

t , Y
(2)
t )};

5 end
6 πt ←

(
1
m , . . . ,

1
m

)
; f̂t ∈ arg minf∈F

1
t

∑
(x,y)∈Dt `(f, x, y); Nz,t ← 1, ∀z ∈ Z;

7 for t = m+ 1, . . . , n do
/* choose the next distribution PXY |Z=z to sample */

8 if minz∈Z Nz,t < tξ then
9 zt ∈ arg minz∈Z Nz,t // Forced exploration

10 else
11 zt = arg maxz∈Z Ut(z, f̂t)
12 end

/* Collect data */

13
(
X

(i)
t , Y

(i)
t

)
i=1,2

∼ Pzt

/* Perform the updates */
14 Update

(
ez(Nz,t)

)
z∈Z ,

Dt ← Dt−1 ∪ {(X(1)
t , Y

(1)
t )}, D(zt) ← D(zt) ∪ {(X

(2)
t , Y

(2)
t }.

15 Update πt ← t−1
t πt + 1

t1{zt}

/* Update the classifier f̂t */
16 f̂t ∈ arg minf∈F

1
t

∑
(x,y)∈Dt `(f, x, y)

17 end
Output: πn

Suppose at the end of n rounds, the resulting mixture distribution is πn. Then introduce the set of
over-represented attributes, Zo ⊂ Z , defined as Zo := {z ∈ Z : πn(z) > π∗(z)} and refer to the set
Zu := Z \ Zo as the under-represented attributes. Note that Zo is empty only if πn = π∗. In this
case, the sampling algorithm has learned the optimal mixing distribution resulting in zero excess risk.
Hence, for the rest of the proof, we will assume that Zo is non-empty. Note that for any z0 ∈ Zo,
Assumption 1 ensures that we must have L(z0, fπn) < L(z0, fπ∗) since πn(z0) > π∗(z0).

Lemma 1. Suppose t0 ≤ n denotes the last time that Algorithm 2 queried any feature belonging to
the subset Zo, and denote the corresponding feature by z0. Then, if n is large enough to ensure that
n1−ξ ≥

(
1

πmin

)
where πmin = minz∈Z π

∗(z) and that 2 maxz∈Z ez
(
(πminn)ξ

)
≤ ε0 (introduced

in Assumption 3), we have the following with probability at least 1− δ:

L(z, fπt0 ) ≤ L(z, fπ∗)︸ ︷︷ ︸
:=M∗

+ 2ez0(Nz0,t0) + (4C/π∗(z0)) ρt0︸ ︷︷ ︸
:=B0

. (8)

Recall that ρt =
∑
z πt(z)ez(Nz,t), C is the constant from Assumption 3, and π∗ is the optimal

mixture distribution defined in (2).

Proof. Throughout this proof we assume that the 1− δ/2 probability event introduced while defining
the UCB term in (4) occurs for the two sequence of samples drawn by Algorithm 2: the first used in
updating Dt for training the classifier f̂t, and the second used in updating (Dz)z∈Z for estimating the
loss of f̂t. Thus, both of these events occur with probability at least 1− δ.

First note the following chain of inequalities: πt0(z0) ≥ πn(z0) > π∗(z0) ≥ πmin. Then at time
t0, it must be the case that Nz0,t0 ≥ πminn as z0 belongs to Zo. This, along with the fact that
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n ≥ (1/πmin)1/(1−ξ) means that Nz0,t0 ≥ πminn ≥ n−1+ξn = nξ, and hence the query to z0 must
have been made due to the condition in Line 11 of Algorithm 2, and not due to the forced exploration
step in Line 9.

Next, we have the following chain of inequalities for any z 6= z0:

L(z, fπt0 )
(a)
≤ L(z, f̂t0) + |L(z, f̂t0)− L(z, fπt0 )|
(b)
≤ L(z, f̂t0) + (2C/πt0(z)) ρt0
(c)
≤ L̂t0(z, f̂t0) + ez(Nz,t) + (2C/πt0(z)) ρt0
(d)
≤ L̂t0(z0, f̂t0) + ez0(Nz0,t) + (2C/πt0 (z0)) ρt0
(e)
≤ L(z0, f̂t0) + 2ez0(Nz0,t0) + (2C/πt0 (z0)) ρt0
(f)
≤ L(z0, fπt0 ) + 2ez0(Nz0,t0) + (4C/πt0 (z0)) ρt0
(g)
≤ L(z0, fπ∗) + 2ez0(Nz0,t0) + (4C/π∗(z0)) ρt0
(h)
= L(z, fπ∗) + 2ez0(Nz0,t0) + (4C/π∗(z0)) ρt0
= M∗ +B0.

In the above display:
(a) follows from an application of triangle inequality,
(b) applies Assumption 3 and uses the fact that n is large enough to ensure that the suboptimality of
f̂t0 w.r.t. fπt0 is no larger than ε0.
(c) follows from the definition of event Ω2,
(d) follows from the attribute selection rule in Line 11,
(e) again uses the uniform deviation event Ω2,
(f) follows from another application of Assumption 3,
(g) uses the fact that πt0(z0) > π∗(z0), the monotonicity condition from Assumption 1,
(h) uses the result of Proposition 1 to write L(z0, fπ∗) = L(z, fπ∗) := M∗.

Next, we show that for a large enough value of n, due to the forced exploration step (Line 9 in
Algorithm 2), the values of πt0(z) for z ∈ Zu are not too small.

Lemma 2. For any given A < πmin = minz∈Z π
∗(z), there exists an n0 < ∞ , defined in (12)

below, such that for all n ≥ n0, the following are true at time t0 (recall that t0 denotes the last time
at which an attribute from Zo was queried by the algorithm):

πt0(z) ≥ (m− 1)π∗(z)

m
+
A

m
, for all z ∈ Zu, (9)

and t0 ≥ n
(

πmin

2πmin −A

)
. (10)

Recall that in the above display m = |Z|.

Proof. First note that for any z ∈ Zu, we have

M∗ ≤ L(z, fπt0 ) ≤M∗ +B0,

where we have used the notation M∗ = L(z, fπ∗) introduced in (8). The left inequality above is due
to the monontonicity condition of Assumption 1, while the right inequality is from Lemma 1.

Introducing the notation πmin = minz∈Z π
∗(z), we note that by definition t0 ≥ πminn. Recall that

the term B0 is defined as B0 = 2ez0(Nz0,t0) + (4C/π∗(z0)) ρt0 . Now, since Nz0,t0 ≥ πminn and due
to the monotonicity of ez(Nz,t), we can upper bound ez0(Nz0,t0) with ez0(πminn). Next, recall that
ρt0 =

∑
z∈Z πt0(z)ez(Nz,t0) ≤ maxz∈Z ez(Nz,t0). Since t0 ≥ Nz0,t0 ≥ πminn, and due to the

fact that forced-exploration step, i.e., Line 9 of Algorithm 2, was not needed at time t0, we must
have Nz,t0 ≥ (πminn)ξ for all z ∈ Zu. Thus the second term in the definition of B0 can be simply
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bounded with 4C/π∗(z0) maxz∈Z ez((πminn)ξ) ≤ 4C/πmin maxz∈Z ez((πminn)ξ). Combining these
two steps, we finally get that B0 ≤ (4C/πmin + 2) maxz∈Z ez((πminn)ξ).

By the monotonicity of the terms ez(Nz,t) and ρt, we note that limn→∞B0 = 0, since
limn→∞maxz∈Z ez((πminn)ξ) = 0. Thus as n goes to infinity, L(z, fπt0 ) converges to the op-
timal value M∗, which by continuity of the mapping π 7→ L(z, fπ) for all z ∈ Z implies that
πt0 → π∗. We can use this fact to define a sufficient number of samples, denoted by n0, beyond
which it can be ensured that πt0 satisfies the statement in (9).

πmin = min
z∈Z

π∗(z); b = inf

{
max
z∈Z

L(z, fπ)−M∗ : ‖π∗ − π‖∞ >
πmin −A

m

}
;

(11)

n0 := max

{
n′0,

1

π2
min

}
; n′0 := min

{
n ≥ 1 :

(
4C

πmin
+ 2

)
max
z∈Z

ez((πminn)ξ) ≤ b

}
.

(12)

Thus the definition of the term b, combined with the upper bound on B0 due to Lemma 1 and the
forced-exploration rule ensure that for n ≥ n0, we must have πt0(z) ≥ π∗(z)/2 for all z ∈ Zu as
required by (9).

Since we will use the above computation of n′0 several times, we formalize it in terms of the following
definition.

Definition 2 (SmallestBudget). Given constants c > 0, p, q and r ∈ (0, 1], the function
SmallestBudget returns the following

SmallestBudget(c, p, q, r) = min
{
n ≥ 1 : max

z
ez(Npq) ≤ γ/c

}
, where

γ = inf

{
max
z∈Z

L(z, fπ)−M∗ : ‖π∗ − π‖∞ > r

}
and Npq = (pn)q.

Note that n′0 in (12) is equal to SmallestBudget ((4C/πmin + 2), πmin, ξ, (πmin −A)/m).

For the proof of the statement in (10), we note that since πt0(z) ≥ π∗(z)− πmin−A
m for all z 6= z0,

the time t0 must satisfy the following:

t0 = Nz0,t0 +
∑
z 6=z0

Nz,t0 ≥ π∗(z0)n+
∑
z 6=z0

(
π∗(z)− πmin −A

m

)
t0

= π∗(z0)n+

(
1− π∗(z0) +

(m− 1)(πmin −A)

m

)
t0.

This, in turn, implies that

t0 ≥ n
(

π∗(z0)

π∗(z0) + m−1
m (πmin −A)

)
≥ n

(
πmin

2πmin −A

)
.

This completes the proof of (10).

We now state a basic result about the behavior of πt:
Lemma 3. Suppose the empirical mixture distribution is πr at some time r, and in the time interval
{r + 1, . . . , t} the agent only queries attributes z from Z ′ ⊂ Z such that

∑
z∈Z′ πr(z) < 1. Then

there exists at least one z ∈ Z ′ such that πt(z) > πr(z).

Proof. The statement follows by contradiction. Assume that the conclusion stated above is not true,
and πt(z) ≤ πr(z) for all z ∈ Z ′. Introducing bz to denote the number of times attribute z ∈ Z ′ is
queried in the time interval {r + 1, . . . , t}, we then have

πt(z) =
rπr(z) + bz

t
⇒ (t− r)πt(z) + r (πt(z)− πr(z))︸ ︷︷ ︸

≤0

= bz ⇒ (t− r)πt(z) ≥ bz. (13)
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Note that
∑
z∈Z′ πt(z) =

t−r(1−
∑
z πr(z))

t < 1 by assumption that
∑
z∈Z′ πr(z) < 1. Combining

this with (13), we get the required contradiction as follows:

(t− r) > (t− r)
∑
z∈Z′

πt(z) ≥
∑
z∈Z′

bz = (t− r).

Before proceeding, we introduce some notations. As stated earlier, due to the definition of the term t0,
we know that in the rounds t ∈ {t0 + 1, . . . , n}, the algorithm only queries the attributes belonging
to the set Zu. If the set Zu is empty, that means t0 must be equal to n and the algorithm stops there.
Otherwise, the interval {t0 + 1, . . . , n} can be partitioned into {t0 + 1, . . . , t1}, {t1 + 1, . . . , t2},
. . . , {ts + 1, . . . , n} for appropriately defined t1, . . . , ts and s ≤ |Z| − 1 as follows.

• First we introduce the term Zt to denote the ‘active set’ of attributes at time t, i.e., the set of
attributes that are queried at least once after time t. Note that we have Zt0 = Zu.

• Then (for t ≥ t0) we define a subset Z(1)
o of Zt as those attributes z ∈ Zt for which we

have πt0(z) < πn(z). By Lemma 3, we know that Z(1)
o must be non-empty.

• Next, we define t1 as the last time t ≤ n at which an attribute z ∈ Z(1)
o is queried by the

algorithm.

• If t1 = n, then we stop and s = 1. Otherwise, we repeat the previous two steps with
Zt1 = Zt0 \ Z

(1)
o .

To clarify the above introduced notation, we present an example.

Example 2. Consider a problem with set of attributes Z = {a1, a2, a3, a4}, n = 20 and π∗ =
(0.25, 0.25, 0.25, 0.25). Suppose an adaptive algorithm3 selects the following sequence of attributes
(given a budget of 20):

a1, a2, a3, a4, a1, a1, a1, a1, a1, a1, a4, a1, a1, a2, a2, a2, a3, a3, a3, a4. (14)

Then as we can see, the algorithm ends up with πn = (9/20, 1/5, 1/5, 3/20).

• Comparing πn with π∗, we observe that the set Zo is {a1} and Zu = {a2, a3, a4}.
• The last time an element of Zo is queried, that is t0, is equal to 13 and the corresponding

attribute is z0 = a1. The mixture distribution at time t0 is πt0 = (9/13, 1/13, 1/13, 2/13).

• Comparing πt0 with πn, we observe that the set Z(1)
o is {a2, a3} since their fractions

increase in the period [t0 + 1, n]N, and Z(1)
u = {a4}. The last time an element of Z(1)

o is
queried is t1 = 19, and the corresponding attribute is z1 = a3.

• Finally, since only one element remains, we have Z(2)
o = {a4}, Z(2)

u = ∅ and thus t2 = n
and z2 = a4. Also note that the total number of phases above is 3 and hence the term
s = 3− 1 = 2.

Lemma 4. Suppose, z1 is the element of Z(1)
o (introduced above) queried by the algorithm at time

t1. Then, the following is true at time t1 for all z ∈ Z \ {z1}

L(z, fπt1 ) ≤M∗ +B0 +B1, where B1 = 2ez1(Nz1,t1) + (8C/π∗(z1)) ρt1 (15)

Furthermore, repeating this process till the budget is exhausted, we get for any z ∈ Z and an s < m

L(z, fπn) ≤M∗ +

s∑
i=0

Bi, where Bi = 2ezi,Nzi,ti + (8C/πminπ
∗(zi)) ρti , for i > 1.

(16)

Here s is the (random) number of ‘phases’ (see Example 2), and is always upper bounded bym = |Z|.
3note that the sequence of attributes have been chosen only for illustrating the notation, and do not satisfy the

forced exploration condition in Algorithm 2
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Proof. To prove (15), we note that at time t1 for any z 6= z1, we have

L(z, fπt1 )
(a)
≤ L(z, f̂t1) +

2C

πt1(z)
ρt1 ≤ L̂t1(z, f̂t1) + ez,Nz,t1 +

2C

πt1(z)
ρt1

(b)
≤ L̂t1(z1, f̂t1) + ez1,Nz1,t1 +

2C

πt1(z1)
ρt1

(c)
≤ L(z1, fπt1 ) + 2ez1,Nz1,t1 +

4C

πt1(z1)
ρt1

(d)
≤ L(z1, fπt0 ) + 2ez1,Nz1,t1 +

4C

πt1(z1)
ρt1

(e)
≤ L(z1, fπt0 ) + 2ez1,Nz1,t1 +

4C
(m−1)π∗(z1)

m + A
m

ρt1

(f)
= L(z1, fπt0 ) +B1 ≤ M∗ +B0 +B1.

In the above display
(a) uses Assumption 3 and the event Ω2 introduced while defining the UCB in (4),
(b) follows from the point selection rule in Line 11 of Algorithm 2,
(c) uses Assumption 3,
(d) uses that from the definition of z1, we must have πt1(z1) ≥ πt0(z1), and due to monotonicity
assumption (Assumption 1), L(z1, fπt0 ) > L(z1, fπt1 ), and
(e) uses the fact that πt1(z1) ≥ πt0(z1) ≥ π∗(z1)/2 proved in (9), and
(f) uses Lemma 1 to bound L(z1, fπt0 ) with M∗ +B0 to get (15).

Now, assume that the budget n satisfies n ≥ n1 := max{n0, n
′
1}; where

n′1 = SmallestBudget
(
c0 + c1, πmin, ξ,

2(πmin −A)

m

)
, where (17)

c0 =
4C

A0
+ 2; c1 =

4C

A1
+ 2; and Ai :=

i

m
A+

(m− i)πmin

m
, for 0 ≤ i ≤ m. (18)

Then by the definition of the SmallestBudget function (introduced in Definition 2 in Appendix B.1),
we must have πt1(z) ≥ (m−2)π∗(z)

m + 2A
m for all z ∈ Z .

The proof of (16) essentially follows by repeating the above argument a further s− 1 times. However,
there is one minor difference. In proving (15), specifically in Step (e), we used the fact that πt1(z1) ≥
A1 := A

m + (m−1)πmin

m . For i ≥ 2, we can similarly use the fact that πti(zi) ≥ Ai := iA+(m−1)πmin

m .
The corresponding requirement on n is that, with

n ≥ ni := max{n0, . . . , ni−1, n
′
i}, where (19)

n′i = SmallestBudget
(
c0 + . . . ci, πmin, ξ,

(i+ 1)(πmin −A)

m

)
, and

ci =
4C

Ai
+ 2, for all 0 ≤ i ≤ m.

Lemma 5. Finally, we obtain that maxz∈Z L(z, f̂πn)−M∗ = O
(
|Z|C
πmin

maxz∈Z ez(NA)
)

, where

N = A
(

πmin

2πmin−A

)
n.

Proof. First note that for all ti, i = 1, 2, . . . , s, we have ρt ≤ maxz∈Z ez(Nz,t). Now, we note the
following: for any i = 0, . . . s, we have minz∈Z πti(z) ≥ Ai ≥ A. Also for all i = 0, . . . s, we also
have trivially, using (10), ti ≥ NA := πmin/(2πmin −A)n. Together these two statements imply the
following:

• B0 ≤ c0 maxz∈Z ez(Nz,t0) ≤ c0 maxz∈Z ez(NA) =
(

4C
πmin

+ 2
)

maxz∈Z ez(NA).
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• Similarly, for i ≥ 1 we have Bi ≤ ci maxz∈Z ez(Nz,ti) ≤ ci maxz∈Z ez(NA) ≤(
4C
Ai

+ 2
)

maxz∈Z ez(NA).

Combining the above two points, we get the following
s∑
i=1

Bi ≤
s∑
i=1

(
4C

Ai−1
+ 2

)
max
z∈Z

ez(NA)

which, if A ≥ πmin/2, implies

max
z∈Z

L(z, fπn)−M∗ = O
(
|Z|C
πmin

max
z∈Z

ez(NA)

)
as required. Note that the above result holds under the assumption that n is large enough to ensure
that the conditions in (19) is satisfied for all 0 ≤ i ≤ s. Since s ≤ m− 1, a sufficient condition for
this is that the condition in (19) is satisfied for all 0 ≤ i ≤ m− 1.

B.1.1 Knowledge of parameter C

In our analysis above, we did not impose any condition on the forced exploration parameter ξ; instead
we used knowledge of the parameter C from Assumption 3. We now show that if for some 0 < ξ < 1,
it is known that limN→∞maxz∈Z

ez(Nξ)
Nξ−1 = 0, then we can remove the C dependent term from (4)

and obtain the same guarantees for Aopt as in Theorem 1.

The proof will follow the same outline as in the previous section, and to avoid repetition, we obtain a
result analogous to Lemma 1. In particular, with the same definition of t0 and z0 as in Lemma 1 and
Lemma 2, the following is true at time t0:

L(z, fπt0 ) ≤ L̂t0(z, fπt0 ) + ez(Nz,t0)

≤ L̂t0(z, f̂t0) + ez(Nz,t0)︸ ︷︷ ︸
=Ut0 (z,f̂t0 )

+
2C

πt0(z)
ρt0

(a)

≤ Ut0(z0, f̂t0) +
2C

πt0(z)
ρt0

≤ L(z0, fπt0 ) + 2ez(Nz0,t0) + 2Cρt0

(
1

πt0(z0)
+

1

πt0(z)

)
(b)

≤ L(z0, fπt0 ) +

(
2C

πmin
+

2C

tξ−1
0

)
ρt0

(c)

≤ L(z0, fπt0 ) +

(
2C

πmin
+

2C

tξ−1
0

)
max
z∈Z

ez(t
ξ
0)︸ ︷︷ ︸

:=B′0

In the above display,
(a) uses the fact that at time t0, the attribute z0 was selected by maximizing Ut0(z, f̂t0),
(b) uses the fact that πt0(z0) > πmin and πt0(z) ≥ tξ−1

0 for all z 6= z0 since the forced exploration
step was not invoked at time t0, and
(c) uses the fact that ρt0 ≤ maxz∈Z ez(Nz,t0) ≤ maxz∈Z ez(t

ξ
0) due to the monotonicity of ez(N)

and the fact that Nz,t0 ≥ t
ξ
0 for all z ∈ Z at time t0.

Now, to continue with the rest of the proof as in Appendix B.1, we need that the term B′0 converges to
zero as n (and hence, t0) goes to infinity. The first term of B′0, i.e., 2C maxz ez(t

ξ
0)/πmin, converges

to zero from the condition that the uniform confidence bound converges to zero as the number of
samples, tξ0, goes to infinity; while the second term, 2C

tξ−1
0

maxz ez(t
ξ
0) converges to zero from the

assumption on ξ made at the beginning of this section. Using this fact, we can then proceed as in
Lemmas 2, 4, and 5 to get the final result.
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B.2 Relation to Active Learning in Bandits

Our formulation of the minimax fair classification problem diverges from the Active learning in
bandit (ALB) problem due to the fact that drawing samples from one attribute can reduce the
performance of another. To make the discussion concrete, consider an ALB problem with two
distributions Q1 ∼ N(µ1, σ

2
1) and Q2 ∼ N(µ2, σ

2
2) for µ1, µ2 ∈ R and σ2

1 , σ
2
2 ∈ (0,∞). Let Ni,t

denote the number of samples allocated by an agent to Qi for i = 1, 2 and t ≥ 1. Then, we can
construct high probability confidence sequences around µ̂i,t (the empirical counterparts to µi at time
t) of non-increasing (in t) lengths ei,t such that |µ̂i,t − µi| ≤ ei,t. If at time t, the agent decides to
draw a sample from arm 1, it would not change the quality of its estimate of Q2 at time t+ 1 and
beyond.

On the other hand, let us consider Instance 2 of SyntheticModel1(µµµ) (introduced in Definition 1)
with F being the set of all linear classifiers passing through origin. This is illustrated in Figure 8,
where the circles denote the one-square-deviation region around the mean values. The shaded circles
correspond to the attribute Z = v, and the circles with dashed boundaries correspond to the label
Y = 0. For example, PX|Y Z(·|Y = 0, Z = u) is denoted by the top left circle. Suppose at some time
t1, the current classifier f̂t1 (represented by the solid gray line passing through origin in Figure 8)
has low (resp. high) accuracy for the protected attribute Z = v (resp. Z = u). To remedy this, the
agent may draw more samples from the distribution of attribute Z = v to skew the training dataset
distribution towards Z = v. This would result in the updated classifier f̂t2 (the dashed gray line in
Figure 8) at some time t2 > t1 to achieve high accuracy for the attribute Z = v. But this increased
accuracy for Z = v comes at the cost of a reduction in the prediction accuracy for the attribute Z = u,
as shown in Figure 8.

The above discussion highlights the key distinguishing feature of our problem from the prior work
in ALB. Because of this distinction, the existing analyses of the ALB algorithms do not carry over
directly to our case. As a result, to quantify the performance of Algorithm 2, we device a new
‘multi-phase’ approach which is described in detail in Appendix. B.1.

Figure 8: Figure demonstrates the second instance of SyntheticModel1 introduced in Section 2.2.
Here the circles denote the one-standard-deviation regions of the distributions of features X condi-
tioned on Y and Z. Shaded circles correspond to Z = u and circles with dashed boundaries represent
Y = 0. The solid gray line represents a possible linear classifier that may be learned if the dataset
has fewer examples from Z = v. If an adaptive algorithm addresses this by populating the data-set
with numerous examples from Z = v, a possible updated linear classifier is shown by the dashed
gray line. This demonstrates the main distinguishing feature of our problem w.r.t. the active learning
in bandits (ALB) problem: allocating samples to improve the performance on one attribute can have
an adverse effect on the performance of the resulting classifier on other attributes.

20



C Details of ε-greedy strategy

The ε-greedy strategy originally proposed by Abernethy et al. (2020) proceeds as follows at
time t: with probability 1 − ε, draw a pair (Xt, Yt) from the distribution Pzt where zt is the
attribute with largest empirical loss; and with probability ε draw (Zt, Xt, Yt) from the popula-
tion distribution PXY Z . If πZ(·) denotes the marginal of the population distribution over Z , i.e.,
πZ(z) =

∑
x,y PXY Z(x, y, z); then the ε-greedy strategy can be equivalently described as follows:

For any t = 1, 2, . . ., do

• Draw a random variable Qt ∼ Bernoulli(ε).

• If Qt = 1, draw Zt ∼ πZ . Else set Zt ∈ arg maxz∈Z L̂t(z, f̂t).
• Draw a pair of samples from the distribution PZt .

For simplicity of presentation, we assume that πZ is the uniform distribution, i.e., πZ(z) = 1/m for
all z ∈ Z . However, our theoretical results can be easily generalized to the case of any πZ which
places non-zero mass on all z ∈ Z .

C.1 Analysis of the ε-greedy Sampling Strategy

The ε-greedy strategy proposed in Abernethy et al. (2020) proceeds as follows: for any t ≥ 1, it
maintains a candidate classifier f̂t along with its empirical loss on m validation sets corresponding to
the attributes z ∈ Z . At each round t, the algorithm selects an attribute zt as follows: with probability
ε, zt is drawn from a fixed distribution over Z , and with probability 1− ε, it is set to the distribution
with the largest empirical loss. Having chosen zt, the algorithm draws a pair of samples from Pzt
and updates the training and validation sets, as well as the classifier f̂t. This process is continued
until the sampling budget is exhausted.

Abernethy et al. (2020) present two theoretical results on the performance of their ε-greedy strategy.
The first one (Abernethy et al., 2020, Theorem 1), is an asymptotic consistency result derived under
somewhat restrictive assumptions: X = R, F is the class of threshold classifiers, and the learner has
access to an oracle which returns the exact loss, L(z, fπt), for every πt. In their second result (Aber-
nethy et al., 2020, Theorem 2), they analyze the greedy version (i.e., ε = 0) of the algorithm with
|Z| = 2, and show that at time n, either the excess risk is of O

(
maxz∈Z

√
2dV C(`◦F) log(2/δ)/Nz,n

)
,

or the algorithm draws a sample from the attribute with the largest loss. However, due to the greedy
nature of the algorithm analyzed, there are no guarantees that Nz,n = Ω(n), and thus, in the worst
case the above excess risk bound is O(1).

We now show how the techniques we developed for the analysis of Algorithm 2 can be suitably
employed to study the ε-greedy strategy under the same assumptions as in Theorem 1. In our results,
we assume that the distribution according to which ε-greedy selects an attribute with probability ε at
each round t is uniform. This is just for simplicity and all our results hold for any distribution which
places non-zero mass on all z ∈ Z .

We first present an intuitive result that says if the ε-greedy strategy is too exploratory (ε is large), the
excess risk will not converge to zero. We present an illustration of this result using Instance I of the
SyntheticModel1 introduced in Section 2.2 in Figure 9 in Appendix C.
Proposition 2. If the ε-greedy strategy is implemented with ε > mπmin := |Z|minz∈Z π

∗(z),
then its excess risk is Ω (1) with probability at least 1 − δ for n large enough (see Equation 21 in
Appendix C.2 for the precise condition on n).

Proof Outline. The result follows from two observations: (i) For all t larger than a term
τ0(δ, ε, πmin), defined in (21), with probability at least 1 − δ, for any z ∈ Z , we must have
πt(z) ≥ πmin+ε/m

2 , and (ii) Suppose πmin is achieved by some attribute zmin, i.e., π∗(zmin) = πmin.
Then, the first statement implies that the excess risk of the ε-greedy algorithm is at least
minπ:π(zmin)≥(πmin+ε/m)/2 L(zmin, fπ)−M∗, which is strictly greater than zero by Assumption 1.
The detailed proof is reported in Appendix C.2.

According to Proposition 2, for the excess risk to converge to zero, the ε-greedy strategy must be
implemented with ε ≤ πmin/m. We next derive an upper-bound on the excess risk of ε-greedy,
similar to the one in Theorem 1 for Algorithm 2.
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Theorem 2. Let Assumptions 1-3 hold and ε-greedy implemented with 0 < ε < mπmin. If the query
budget n is sufficiently large (see Equations 23 and 24 in Appendix C.2 for the exact requirements),
then for any 0 < β < mπmin

ε − 1, with probability at least 1− 2δ, we have

Rn(ε-greedy) = O
( |Z|C

q
max
z∈Z

ez(Nq)
)
, (20)

where q = ε/m, Nq = qn
(
πmin − q(1 + β)

)
(1 − β), and C is the parameter introduced in

Assumption 3.

Remark 4. The assumption on ε in Theorem 2 implies that q = ε/m < πmin, and as a result
qnπmin < π2

minn. Given this and the monotonicity of the size of the confidence interval ez(N)
w.r.t. N , we may conclude that the bound on the excess risk of Alg. 2 (Equation 5) is always tighter
than the one for ε-greedy strategy (Equation 20). Note that for the classifiers with finite VC-
dimension, the bound in (20) is of the same order in n as the one in (5), but with a larger leading
constant.

C.2 Proof of Proposition 2

Figure 9: This figure shows an instance when the ε-greedy strategy is over-exploratory which results
in the empirical mixture distribution πt being strictly away from π∗, and thus resulting in Ω(1) excess
risk even as n goes to infinity. For the ε-greedy strategy in this particular figure, we used ε = .5 with
m = 2 and πmin = minz π

∗(z) ≈ 0.23. This provides a numerical demonstration of the statement
of Proposition 2. Note that the Aopt strategy is more resilient to the wrong choice of the exploration
parameter c0: in this figure we used c0 = 1.0 (much larger than the 0.1 value used in experiments)
and the corresponding πn(u) for Aopt still eventually converges towards π∗(u).

Fix any z ∈ Z , and decompose Nz,t into N (0)
z,t + N

(1)
z,t where, N (1)

z,t =
∑t
i=1 1{zi=z}Qi is the

number of times up to round t the attribute z was queried due to the exploration step (i.e., Qt = 1) of
the ε-greedy algorithm.

Now, define Mz,0 = 0 and Mz,t = Mz,t−1 +Qt1{z̃t=z} − ε/m. Due to the fact that Qt and z̃t are
independent, it is easy to check that (Mz,t)t≥0 forms a martingale sequence. For some given δ > 0,

introduce the notation δt = 6δ
mπ2t2 and bt =

√
t log(2/δt)

2 . We then have the following:

n∑
t=1

P (Mz,t > bt) ≤
n∑
t=1

(
t∏
i=1

E
[
exp

(
λQi1{z̃i=z} − ε/m

)∣∣(Qj)i−1
j=1

])
e−λbt

≤
n∑
t=1

etλ
2/8−λbt (a)

=

n∑
t=1

e−2b2t/t ≤
∞∑
t=1

δt
2

=
δ

2m
.

In the above display, (a) follows by setting λ = 4bt/t. By repeating the same argument with the
martingale sequence {−Mz,t : t ≥ 0}, we get that P (|Mz,t| ≤ bt,∀t ≥ 1, ∀z ∈ Z) ≥ 1 − δ. In
other words, it implies that, with probability at least 1− δ, we have the following:

N
(1)
z,t ≥

t

ε
− bt, ∀ t ≥ 1, ∀z ∈ Z.
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This implies that Nz,t ≥ ε/m − bt for all z, t. In particular, if zmin is the attribute such that
π∗(zmin) = minz∈Z π

∗(z) = πmin, then this implies that π̂t(zmin) ≥ ε/m− bt/t for all t, z. Using
the fact that limt→∞ bt/t = 0, we define τ0 = τ0(δ, ε, πmin), as follows:

τ0(δ, ε, πmin) := min

t ≥ 1 :

√
log
(
mπ2t2/3δ

)
2t

≤ ε−mπmin

2m

 . (21)

This implies that with probability at least 1 − δ, πt(zmin) ≥ (πmin + ε/m)/2 for all t ≥
τ0. Hence the excess risk of the ε-greedy algorithm under these conditions is at least
minπ:π(zmin)≥(πmin+ε/m)/2 Ezmin

[` (fπ, X, Y )]−M∗, which is an Ω(1) term due to Assumption 1.

C.3 Proof of Theorem 2

First we partition the interval [1, n]N into T0 and T1, where Tj = {t : Qt = j} for j = 0, 1. In other
words, T0 denotes the times at which the ε-greedy strategy is greedy while T1 denotes the times at
which Qt = 1 and the ε-greedy strategy is exploratory.

Then we introduce the following terms:

• Define Zo and Zu as in the proof of Theorem 1. That is, Zo = {z ∈ Z : πn(z) > π∗(z)}
and Zu = Z \ Zo. We assume, as before, that Zo 6= ∅. Then, we define t0 := max{t ∈
T0 : zt ∈ Zo}, and denote the corresponding attribute (queried at time t0) with z0.

• Then, by appealing to Lemma 3, we note that there must exist a nonempty Z(1)
o ⊂ Zu such

that πn(z) > πt0(z) for all z ∈ Z(1)
o . Using this define t1 = max{t ∈ T0 : zt ∈ Z(1)

o } and
use z1 to denote the corresponding attribute queried at time t1. We can proceed in this way
to define {(tj , zj) : 2 ≤ j ≤ s} for an appropriate s ≤ m− 1 (such that ts = n).

First, we define the 1− δ probability event Ω3 as follows (see proof of Proposition 2 in Appendix C.2
for derivation):

Ω3 =


∣∣∣N (1)

z,t −
ε

m
t
∣∣∣ ≤√ t log(mπ2t2/3δ)

2︸ ︷︷ ︸
:=bt

 . (22)

For the rest of this proof, we will assume that the (1− 2δ) probability event ∩3
i=1Ωi holds, where Ω1

and Ω2 are the same uniform deviation results that were used in defining the UCB in (4).

Then we have the following:

Lemma 6. At time t0, we have L(z, fπt0 ) ≤ M∗ + B̃0 where B̃0 :=

4 (1 + C/q−βt0/t0) maxz∈Z ez,Nz,t0 and q = ε/m.

Proof.

L(z, fπt0 ) ≤ L̂t0(z, fπt0 ) + 2ez(Nz,t0)

≤ L̂t0(z, f̂t0) + 2ez(Nz,t0) +
2C

πt0(z)
ρt0

≤ L̂t0(z0, f̂t0) + 2ez(Nz,t0) +
2C

πt0(z)
ρt0

≤ L(z0, fπt0 ) + 2 (ez(Nz,t0) + ez0(Nz0,t0)) + 2Cρt0

(
1

πt0(z0)
+

1

πt0(z)

)
≤ L(z0, fπt0 ) + 4

(
1 +

C

ε/m− bt0/t0

)
max
z∈Z

ez(Nz,t0)

= L(z0, fπt0 ) + B̃0.
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Lemma 7. Suppose n is large enough to satisfy the conditions in (24) for some fixed 0 <
β < πmin/q − 1. Then we have B̃0 ≤ 4 (1 + C/q(1−β)) maxz∈Z ez(Nq), where Nq :=
nq (πmin − q(1 + β)) (1− β).

Due to the definitions of event Ω3 and the time t0, it must be the case that Nz0,t0 ≥ N
(0)
z0,n ≥

π∗(z0)n−N (1)
z0,n ≥ (π∗(z0)− ε/m = −bn/n)n. Next, we assume that n is large enough, such that

the following are satisfied for some 0 < β:

• First, we assume that n is large enough to ensure that bn/n ≤ βε/m for some 0 < β <
mπmin/ε− 1, i.e.,

n ≥ ñ0(β) := min

{
t ≥ 1 :

log t

t
≤ β2ε2

m2
− 1

2
log
(
mπ2

/3δ
)}

. (23)

This implies that t0 ≥ n (π∗(z0)− ε/m(1 + β)) ≥ n
(
πmin − ε(1+β)

m

)
.

• Next, we assume that bt0/t0 ≤ βε/m. A sufficient condition for this is

n

(
πmin −

ε(1 + β)

m

)
≥ ñ0(β) ⇒ n ≥ ñ0(β)

πmin − ε(1+β)/m
. (24)

Then, with the notation Nq = n (πmin − q(1 + β)) (q(1− β)), where q = ε/m, we have the
following:

B̃0 = 4

(
1 +

C

q − bt0t0

)
max
z∈Z

ez(Nz,t0) ≤ 4

(
1 +

C

q(1− β)

)
max
z∈Z

ez(Nq).

Now, proceeding in the same way as in Lemma 4 and Lemma 5, we can define the terms B̃j for
j ≥ 1 (analogous to the terms Bj introduced in Lemma 4) to show that with probability at least
1− 2δ, the excess risk resulting from the ε-greedy strategy satisfies:

max
z∈Z

L(z, fπn)−M∗ ≤
s−1∑
j=0

B̃j = O
(
|Z|C

q(1− β)

)
max
z∈Z

ez(Nq),

as required.

C.4 Comparison with Aopt

The ε-greedy strategy differs from Aopt in two major ways:

1. The excess risk bound derived in Theorem 1 forAopt is always tighter than the corresponding
bound for ε-greedy strategy in Theorem 2. In particular, for the family of classifiers with
finite VC dimension, both the algorithms achieve same convergence rates w.r.t. n, but the
ε-greedy strategy has a larger leading constant.

2. From a practical point of view, the ε-greedy strategy is less robust to the choice of parameter
ε as compared to the Aopt strategy. For instance, as shown in Figure 9, choosing a large
value of ε may result in the mixture distribution (πt) not converging to π∗, whereas even
with much larger values of c0, the πt from Aopt algorithm still eventually converges to π∗.

D Proof of Lower Bound

In this section, we first formally state the lower bound result and then present its proof. We denote by
M the class of SyntheticModel1s introduced in Definition 1. We also define the following class of
problems:

Definition 3. Let Q denote the class of problems defined by the triplets (µ,F , `01), where µ ∈M
is an instance of the SyntheticModel1, F is the class of linear classifiers in two dimensions, and
`01 is the 0− 1 loss.
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For the function class F , we know that ez(N) = O(
√

log(n/δ)/N) for both z ∈ Z = {u, v},
which implies that the expected excess risk achieved by both Aopt and ε-greedy strategies is of

O
(√

log(n)/n
)

. We now prove that this convergence rate (in terms of n) for this class of problems.

Proposition 3. Suppose A is any adaptive sampling scheme which is applied with a budget n to a
problem Q ∈ Q introduced in Definition 3. Then, we have

max
Q∈Q

EQ [Rn (A)] = Ω
(
1/
√
n
)
. (25)

To prove this proposition, we consider two problem instances in the class of problems, Q, used in
the statement of Proposition 3, denoted by Qµ and Qγ . The instance Qµ has the synthetic model
with mean vectors µ0u = (−r, r), µ1u = (r,−r), µ0v = (−r′,−r′) and µ1v = (r′, r′) for some
r′ > r > 0, and Qγ has the mean vectors µ0u = (−r′, r′), µ1u = (r′,−r′), µ0v = (−r,−r) and
µ1v = (r, r). For both these problem instances, implementing an adaptive sampling algorithm A
with a budget n induces a probability measure on the space (X × Y ×Z)n. We use Pµ and Pγ (resp.
Eµ and Eγ) to denote the probability measures (resp. expectations) for the problem instances Qµ and
Qγ respectively.

Then we have the following KL-divergence decomposition result.
Lemma 8. For any event E, we have the following:

n(r′ − r)2

2
= DKL (Pµ,Pγ) ≥ dKL (Pµ(E), Pγ(E)) ≥ 2 (Pµ(E)− Pγ(E))

2
.

In the above display, dKL(a1, a2) for a1, a2 ∈ [0, 1] denotes the KL-divergence between two Bernoulli
random variables with parameters a1 and a2 respectively.

As a consequence of the above result, we have |Pµ(E)− Pγ(E)| ≤ (r′ − r)
√
n/2.

Proof. The first inequality is a consequence of the data-processing inequality for KL-divergence
(Polyanskiy and Wu, 2015, Corollary 2.2), while the second inequality follows from an application
Pinsker’s inequality (Polyanskiy and Wu, 2015, Theorem 6.5).

We now show the derivation of the first equality in the statement. Let Ht denote the history at the
beginning of round t, i.e., Ht = (Z1, X1, Y1, . . . , Zt−1, Xt−1, Yt−1). Then for any sequence of
(Z1, X1, Y1, . . . , Zn, Xn, Yn), we have

Pµ (Z1, . . . , Yn) =

n∏
t=1

A (Zt|Ht−1)Qµ (Yt|Zt)Qµ (Xt|Yt, Zt) .

We can write a similar expression for Pγ as well. Now, proceeding as in (Lattimore and Szepesvári,
2020, Lemma 15.1), we get the following divergence decomposition result

DKL (Pµ,Pγ) = Eµ [Nu,n]DKL (Qµ(·, ·|Z = u), Qγ(·, ·|Z = u)) + Eµ [Nv,n]DKL (Qµ(·, ·|Z = v), Qγ(·, ·|Z = v))

= (Eµ [Nu,n] + Eµ [Nv,n])
(r′ − r)2

2
=
n(r′ − r)2

2
,

where the last equality uses the expression for KL-divergence between two multi-variate Gaussian
distributions.

Every linear classifier f ∈ F can be equivalently parametrized by a normal vector w ∈ R2 such
that f(x) = sign(〈w, x〉). We know that if π(u) = 1, then the optimal linear classifier is the one
with normal vector w1 = (1,−1). That is f∗(x) = sign(〈w, x〉). Similarly, when π(u) = 0, the
optimal linear classifier is the one with w0 = (1, 1), and it varies continuously from w0 to w1 as
π(u) increases from 0 to 1. Now, let a be the value of π(u) at which the optimal linear classifier
fπ(x) = sign(〈w, x〉) with w = (1, 0). In the next lemma, we consider the event E = {πn(u) > a}.
Lemma 9. Suppose πn denotes the mixture distribution returned by the algorithm A after n rounds
when applied to a problem Q ∈ {Qµ, Qγ}. Introduce the event E = {πn(u) > a} and assume that
r′ < 2r. Recall that a ∈ (0, 1) is value of π(u) such that the corresponding optimal linear classifier
has the normal vector (1, 0); that is, fπ(x) = sign(〈x, (1, 0)〉). Then we have the following:

Eµ [Rn(A)] ≥ cr

2
√

2
(r′ − r)Pµ(Ec) and Eγ [Rn(A)] ≥ cr

2
√

2
(r′ − r)Pγ(E),
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where cr := minx∈[r,2r]

∣∣∣Φ′ ( x√
2

)∣∣∣ and Φ(·) denotes the cumulative distribution function (cdf) of a
standard Normal random variable.

Proof. We present the details only for the first inequality as the second inequality follows in an
entirely analogous manner by replacing Ec with E.

Eµ [Rn(A)] = Eµ
[
Rn(A)1{E}

]
+ Eµ

[
Rn(A)1{Ec}

]
≥ Eµ

[
Rn(A)1{Ec}

]
(a)

≥

(
Φ(r/

√
2)− Φ(r′/

√
2)

2

)
Pµ(Ec)

≥ min
x∈[r,2r]

∣∣∣Φ′(x/√2)
∣∣∣ (r′ − r

2
√

2

)
Pµ (Ec)

=
cr

2
√

2
(r′ − r)Pµ (Ec) .

The key observation in the proof which relies on the choice of F as the set of all linear classifiers,
is in step (a) above. This step uses the fact that under the event Ec, when πn(u) ≤ a, the minimax
loss must be at least greater than Φ(r/

√
2)−Φ(r′/

√
2)

2 (here Φ(·) denotes the cdf of the standard
normal random variable). This follows from the fact that under model Qµ, the classifier w∗µ which
corresponds to the optimal mixture distribution π∗µ must satisfy the condition that 〈w∗µ, (1, 0)〉 ≥ 0;
whereas under the event Ec the optimal classifier w∗a satisfies 〈w∗a, (1, 0)〉 ≤ 0 (by definition of event
E).

The final result now follows by combining the results of Lemma 8 and Lemma 9. In particular, we
have the following:

max
Q∈Q

EQ [Rn (A)] ≥ max
Q∈{Qµ,Qγ}

EQ[Rn (A)]
(a)
≥ 1

2
(Eµ [Rn (A)] + Eγ [Rn (A)])

(b)
≥ cr

4
√

2
(r′ − r) (Pµ (Ec) + Pγ (E))

(c)
≥ cr

4
√

2
(r′ − r) (1− |Pµ (E)− Pγ (E)|)

(d)
≥ cr

4
√

2
(r′ − r)

(
1− (r′ − r)

√
n

2

)
(e)
≥ cr

16
√
n
.

In the above display:
(a) uses the fact that average is smaller than maximum,
(b) lower bounds Eµ [Rn (A)] and Eγ [Rn (A)] using the result of Lemma 9,
(c) uses the fact that Pµ(Ec) + Pγ(E) = 1− Pµ(Ec) + Pγ(E) ≥ 1− |Pµ(Ec)− Pγ(E)|,
(d) follows by using the bound |Pµ(Ec)−Pγ(E)| ≤ (r′− r)

√
n/2 derived in Lemma 8, and finally,

(e) follows by setting r′ = r + 1/
√

2n.

D.1 Extending to |Z| > 2

The same idea employed for the case of m = |Z| = 2 can be generalized for larger even values of m.
In particular, let X = R2, Y = {0, 1} as before, and for some even m > 2 let Z = {1, 2, . . . ,m}.
Furthermore, let Zo = {1, 3, . . . ,m− 1} and Ze = {2, . . . ,m} denote the odd and even numbered
elements of Z (in fact any partition of Z into two sets of size m/2 each works). For any i ∈ Z , we
will use Zi to denote Zo if i is odd, and Ze if i is even.

Now, consider m + 1 problem instances for the above (X ,Y,Z), denoted by Q0, . . . , Qm, and
defined as follows:
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• For Q0, we have PY |Z(Y = 1|Z = z) = 1/2 for all z ∈ Z and PX|Y Z(·|Y = y, Z =
z) ∼ N(µyz, I2) where

µyz =



(r, r), for y = 0, z ∈ Zo

(−r,−r), for y = 1, z ∈ Zo

(r,−r), for y = 0, z ∈ Ze

(−r, r), for y = 1, z ∈ Ze

(26)

• For all other z ≥ 1, the problem Qz is exactly the same as Q0 except for PX|Y Z(·|Y =
y, Z = z) for y ∈ {0, 1}. In particular, µoz = (r′, r′), µ1z = (−r′,−r′) if z ∈ Zo and
µ0z = (r′,−r′) and µ1z = (−r′, r′) if z ∈ Ze.

Now, as in the |Z| = 2 case, for any i ∈ Z , define a =
∑
z∈Zi π(z) : w∗π = (1, 0), and note that since

r′ > r, we must have a > 1/2. Introduce the notation Ei to denote the event {
∑
z∈Zi πn(z) > a},

where πn denotes the empirical mixture distribution constructed by a given algorithm A after n
samples. Recall that for any i ∈ Z , the set Zi is equal to Zo or Ze depending on whether i is even or
odd.

Then, proceeding as before, we have

max
0≤i≤m

EQi [Rn(A)] ≥ 1

m

m∑
i=1

EQi [Rn (A)]
(i)

≥ cr(r
′ − r)

2
√

2

1

m

m∑
i=1

PQi (Eci )

≥cr(r
′ − r)

2
√

2

1

m

m∑
i=1

(1− PQi (Ei))

(ii)

≥ cr(r
′ − r)

2
√

2

1

m

m∑
i=1

(1− PQ0
(Ei)− dTV (PQi ,PQ0

))

(iii)

≥ cr(r
′ − r)

2
√

2

(
1− 1

m

(
m

2
+

m∑
i=1

(r′ − r)
√

EQ0
[Ni,n]

2

))
(iv)

≥ cr(r
′ − r)

2
√

2

(
1

2
− 1

m

(
(r′ − r)

√
nm

2

))
=
cr(r

′ − r)
2
√

2

(
1

2
− (r′ − r)

√
n

2m

)
(v)
= Ω

(√
m

n

)
.

In the above display,
(i) follows from the definition of event Ei,
(ii) uses the fact that |PQ0

(Ei)− PQi(Ei)| ≤ dTV (PQ0
,PQi),

(iii) uses Pinsker’s inequality to bound the total-variation distance,
(iv) uses Cauchy-Schwarz inequality along with the fact that

∑m
i=1Ni,n = n,

(v) follows by setting r′ = r +
√
m/2n.

E Details of Experiments

E.1 Synthetic Datasets

Data. We used the two synthetic models introduced in Section 2.2 for generating the training set.
Here we provide a formal definition for SyntheticModel2, an instance of which is illustrated in
Figure 7.
Definition 4 (SyntheticModel2). Set X = R2, Y = {0, 1}, and Z = {u, v} and fix an angle θ and
a constant a ∈ R. Then PX|Y=y,Z=u = U(cy, cy + a). That is, within attribute Z = u and for either
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label Y = y, X is uniformly distributed along one dimension. To get the conditional distributions
for Z = v we draw from mixtures of three Gaussians: P̃X=x|Y=y,Z=v =

∑3
i=1 ρi,yPi,y(x) where each

Pi,y = N (µi,y,Σi,y) and ρi,y are non-negative and sum to one over i. The resulting sample is then
uniformly rotated counterclockwise by θ in the plane.

To elaborate on the intuition provided for this model in the main text, our goal here is to design
a problem where one attribute, here Z = u, has a low maximum expected accuracy, for a linear
classifier, that can be attained with relatively few samples. Here, any linear classifier will misclassify
at least half of all points in the overlap of the intervals (c0, c0 + a) and (c1, c1 + a). And any linear
classifier which intercepts this overlap will attain the maximal possible expected accuracy on Z = u.
Then for Z = v we choose the ρi,y and covariances such that most mass is contained in easily
separable clusters, so that a classifier can attain high accuracy on Z = v with few samples. But,
the sparser clusters are chosen to have some overlap between Y = 1 and Y = 0. The overlap and
sparseness require a learner draw more samples from Z = v to accurately learn the optimal boundary.

Thus Aopt and Greedy will continually sample from Z = u, as any linear classifier will have
relatively low accuracy on it, despite the fact that additional samples do not improve performance on
this attribute. In contrast, Aopt+ identifies this stagnation in performance and samples from Z = v,
over time drawing sufficient samples from the sparse clusters to maximize accuracy on both attributes.

Classifier. We set F to the set of logistic regression classifiers. More specifically we used the
LogisticRegression implementation in the scikit-learn package.

Details of experiments. For the experiments on SyntheticModel1, pictured in Figure 2, for each
trial we set n = 1000 and tracked the πt(u) values for the three algorithms. We repeated the
experiment for 100 trials and plot the resulting mean πt(u) values in the curves, along with the
one-standard-deviation regions.

For experiments on SyntheticModel2, pictured in Figure 6a and Figure 6b, we used the heuristic
algorithm, Aopt+, with c1 = 0.1 and the Mann-Kendall statistic tracking the accuracy after the
previous 20 sample draws for each attribute. We ran 100 trials for each scheme and report the mean
accuracy over both attributes, along with one-standard-deviation regions.

E.2 Real Datasets

We used the following datasets:

• UTKFace dataset. This dataset consists of large number of face images with annota-
tions of age, gender and ethnicity. We used Y = {Male, Female} and set Z =
{White, Black, Asian, Indian, Other}.

• FashionMNIST dataset. This dataset consists of 10 different classes, which were paired off to
get five different binary classification tasks: {(Tshirt, Shirt), (Trousers, Dress),
(Pullover, Coat), (Sandals, Bag), (Sneakers, AnkleBoots)}
• Cifar10 dataset. This dataset also consists of 10 different classes, which were paired off

as follows: { (airplane, ship), (automobile, truck), (bird, cat), (deer,
dog), (frog, horse)}.
• Adult dataset. This is a low dimensional, binary classification problem where the inputs

are a variety of demographic data about an individual and the task is to predict whether the
individual makes more or less than $50, 000/year.

• German dataset. This is another low dimensional, binary classification problem where the
inputs are demographic and financial information about an individual and the task is to
categorize them as low or high risk for defaulting on a loan.

Data Transforms and Augmentation. We used the following pre-processing operations for the different
datasets:

• UTKFace. For this dataset, we first resized the dataset to size 3× 50× 50 from the original
3 × 200 × 200. Then we also applied random horizontal flip with probability 0.5. For
training we used the images from the file UTKFace.tar.gz, while for testing we used the
file crop_part1.tar.gz. (Both of these files can be found at this link shared by the owner
of the dataset).
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• FashionMNIST. We only employed the normalization transform in this case, and used the
default training and test splits.

• Cifar10. We employed a random crop transform (to size 3 × 28 × 28 with padding 1), a
random horizontal flip transform (with probability 0.5) and a normalization transform, and
used the default training and test split.

• Adult. For the categorical inputs we used a one-hot encoding and normalized all numerical
inputs to [0, 1]. We used the provided training/test split.

• German We used the same pre-processing as for the Adult dataset here. As described in
the main paper, this dataset only provides 1000 examples and does not have a canonical
train/test split. Moreover, results were very sensitive to the choice of split. So for every
experiment we generated a new, random 70/30 training/test split and report results averaged
over 500 such trials.

Details of Classifiers. We implemented the CNN using Pytorch. The CNN used for both Cifar10 and
UTKFace had the same architecture consisting of:

• First Conv2d layer with 32 output channels, kernel size 3, padding = 1, followed by ReLU
followed by a MaxPool2d layer with kernel size 2 and stride 2.

• Second Conv2d layer with 64 output channels, kernel size 3, followed by ReLU followed by
MaxPool2d with kernel size 2.

• The two Conv2d layers were followed by 3 fully connected layers with output sizes 600,
120 and 2 respectively.
• For training the neural network we used the Adam optimizer with lr = 0.001.

The CNN used for FashionMNIST was identical, except with the second convolutional layer omitted,
due to the simpler nature of the dataset.

For both Adult and German datasets we again used the LogisticRegression implementation in
the scikit-learn package.

Computing Infrastructure used. The image dataset experiments were run on Google Colab using the
free GPU instances and on a shared computing cluster which provides a variety of different GPUs.
So we cannot provide the exact details of the GPUs we used, but all experiments in the paper can
comfortably run in less than day on a GTX 1080 TI.

E.3 Additional Experimental Results

Here we present results for experiments on additional datasets, these are all analogous to results
presented in the main paper on other datasets.

First we have the German dataset, which is from the UCI Repository (Dua and Graff, 2017) and
qualitatively similar to the Adult dataset. We again use a LR classifier and the exact implementation
of each algorithm. We set Z to be male or female. The results, in Figure 10a, show, on average, an
advantage for Aopt over both Uniform and Greedy schemes. But this dataset contains only 1000
examples in total. We generate a 70/30 training/test split, but find that our results strongly depend on

Figure 10: Left: Minimum test accuracy over all attributes for German dataset as a function of the
sampling budget n, averaged over 500 trials. Right: Minimax error as a function of training round for
Cifar10.
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Figure 11: Test accuracy for each attribute in Cifar10 as a function of the time step, t, for both Aopt
and Uniform sampling schemes, averaged over 10 trials.

Figure 12: Test accuracy for each attribute in UTKFace as a function of the time step, t, for bothAopt
and Uniform sampling schemes, averaged over 10 trials.

this split. To mitigate this, we run 500 trials and generate a new random split for each, but still find
very high variance in our results, indicated by the shaded region in the figure.

Figure 10b shows the minimax error on Cifar10. This again demonstrates a significant improvement
in worst case accuracy for the adaptive schemes over the Uniform scheme, which is equivalent to
Uncurated for this dataset. Figures 11 and 12 show accuracy across all attributes as a function of
training round for Cifar10 and UTKFace for both Aopt and Uniform schemes, as in the analogous
results for FashionMNIST this demonstrates the utility ofAopt for improving fairness between groups
and lends credence to our assumption of the existence of an equalizing sampling distribution for real
world.

Finally Table 1 summarizes the final test set accuracy, with standard deviation ranges, for each dataset
and sampling scheme at the end of their respective training periods. As in other results, the adaptive
schemes show an advantage over Uniform in all cases, and the efficacy of the Uncurated scheme
depends on the nature of the dataset and chosen attributes.

Dataset Aopt Greedy Uniform Uncurated

UTKFace 0.946± 0.003 0.946± 0.012 0.919± 0.008 0.933± 0.007

FashionMNIST 0.936± 0.004 0.924± 0.010 0.893± 0.002 0.893± 0.002

Cifar10 0.743± 0.004 0.742± 0.005 0.726± 0.010 0.726± 0.010

Adult 0.801± 0.001 0.800± 0.002 0.798± 0.002 0.797± 0.003

German 0.721± 0.035 0.713± 0.036 0.716± 0.032 0.715± 0.038

Table 1: Minimum test accuracy over different attributes achieved by the classifiers returned by the 4
sampling schemes.
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