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Sequential Decision Making with Coherent Risk

Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, Shie Mannor

Abstract—We provide sampling-based algorithms for optimiza-
tion under a coherent-risk objective. The class of coherent-risk
measures is widely accepted in finance and operations research,
among other fields, and encompasses popular risk-measures
such as conditional value at risk and mean-semi-deviation. Our
approach is suitable for problems in which tuneable parameters
control the distribution of the cost, such as in reinforcement
learning or approximate dynamic programming with a param-
eterized policy. Such problems cannot be solved using previous
approaches. We consider both static risk measures and time-
consistent dynamic risk measures. For static risk measures, our
approach is in the spirit of policy gradient methods, while for the
dynamic risk measures, we use actor-critic type algorithms.

Index Terms—Coherent Risk, Dynamic Programming, Markov
Decision Processes, Policy Gradient.

I. INTRODUCTION

We consider stochastic optimization problems in which the
objective involves a risk measure of the random cost, in
contrast to the typical expected cost objective. Such problems
are important when the decision-maker wishes to manage the
variability of the cost, in addition to its expected outcome, and
are standard in various applications in finance and operations
research (OR).

There are various approaches to quantify the risk of a
random cost, such as the celebrated Markowitz mean-variance
model [1], or the more recent Value at Risk (VaR) and
Conditional Value at Risk (CVaR) [2]. The preference of
one risk measure over another depends on factors such as
sensitivity to rare events, ease of estimation from data, and
computational tractability of the optimization problem, and
in general, there is no single choice that dominates the rest.
However, the highly influential paper of Artzner et al. [3]
identified a set of natural properties that are desirable for a
risk measure. Risk measures that satisfy these properties are
termed coherent and have obtained widespread acceptance in
finance and OR applications, among others.

When the optimization problem is sequential, such as when
we would like to solve a Markov decision process (MDP),
another desirable property of a risk measure is time consis-
tency. A time-consistent risk measure satisfies a “dynamic
programming” style property: if a strategy is risk-optimal for
an n-stage problem, then the component of the policy from the
t-th time until the end (where ¢ < n) is also risk-optimal (see
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principle of optimality in [4]). The recently proposed class of
dynamic Markov coherent risk measures [5] satisfies both the
coherence and time consistency properties.
In this work, we are interested in solving general problems
of the form
min p(C;6),

where C' is a random cost, controlled by the tuneable param-
eter vector 6, and p is a coherent risk measure. We consider
both time-consistent dynamic Markov coherent risk measures
and standard static coherent risk-measures without explicit
temporal dependence.

For the static case and when the cost is of the form
C = fo(Z), where fy is a deterministic function of the random
variable Z that is independent of 6, the optimization may
be formulated as a stochastic program (owing to the special
mathematical properties of coherent risk measures) and solved
using standard sampling approaches [6]. Such a cost structure
is appropriate for certain domains, such as portfolio optimiza-
tion, in which the investment strategy generally does not affect
the asset prices. However, in many important domains, such
as queueing systems, resource allocation, and reinforcement
learning, the tuneable parameters also control the distribution
of the random outcomes. This is the case we consider in this
paper for which the existing approaches do not apply.

In this work, we develop sampling-based algorithms for
estimating the gradient Vyp(C;60), when p is either a static
or dynamic coherent risk measure, and 6 controls the distri-
bution of Z. The optimization is then carried out using the
standard stochastic gradient descent techniques. A particular
application of our approach is to risk-sensitive MDPs, where
the optimization is over a parametric set of polices (6 is the
policy parameter). Our proposed algorithm for the static risk is
in the spirit of policy gradient algorithms [7], while the one for
the dynamic risk has actor-critic style [8]. Policy gradient and
actor critic algorithms have been applied to various domains
such as robotics, network routing, and finance [9], [10],
[11], and are particularly suitable for problems with large
or continuous state and action spaces [12]. Such problems
often pose a challenge for standard dynamic programming
algorithms due to the curse of dimensionality [13].

Our contributions can be listed as follows:

e A new formula for the gradient of static coherent risk

that is convenient for sampling-based approximation.

o A sampling-based algorithm for the gradient of general
static coherent risk and a consistency proof.

o A new policy-gradient theorem for Markov coherent risk
that relates the gradient to a suitable value function.

o A corresponding actor-critic algorithm for the gradient
of dynamic Markov coherent risk with value-function
approximation. We prove the consistency of the gradi-
ent and analyze the sensitivity of the value-function to
approximation errors.

Related Work: For the case of static-risk, our approach
is similar in spirit to policy gradient methods ([7]; ak.a. the
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likelihood-ratio method in the simulation-based optimization
literature; [14]), and may be seen as an extension of these
methods to coherent risk objectives. Optimization of coherent
risk measures was thoroughly investigated by [6], [15] for
the case discussed above, in which 6 does not control the
distribution of Z. For the case of MDPs and dynamic risk, [5]
proposed a dynamic programming approach. This approach
does not scale-up to large MDPs, due to the “curse of
dimensionality”. The work of [16], [17], [18], [19], [20], [21]
on robust MDPs (sometime also referred to as distributionally
robust MDPs) is relevant since an MDP with a dynamic
coherent risk objective is essentially a robust MDP. For robust
MDPs in which the state-space is finite and moderately-
sized, the approaches in [16], [17], [18], [19] may be used
to calculate an optimal solution. Our method, on the other
hand, can be applied to large or continuous state spaces,
by employing a policy gradient approach to search for a
policy in a parameterized policy space. We note that [20],
[21] considered function approximation, but only in the value
function. For many problems, approximation in the policy
space is more suitable (see, e.g., [22]). Our sampling-based
RL-style approach is suitable for approximations both in the
policy and value function, and scales-up to large or continuous
MDPs. We do, however, make use of a technique from [20]
in a part of our approach.

Risk-sensitive optimization in RL for specific risk functions
has been studied recently by several authors. [23] studied
exponential utility functions, [24] and [25] studied mean-
variance models, [26] and [27] studied CVaR in the static
setting, and [28] and [29] studied dynamic coherent risk for
systems with linear dynamics. Our paper presents a general
method for the whole class of coherent risk measures (both
static and dynamic) and is neither limited to a specific choice
within that class nor to particular system dynamics. For the
special case of CVaR, we obtain results similar to [26], [27],
but under weaker assumptions and simpler derivations.

II. PRELIMINARIES

Consider a probability space (2, F, Py), where ) is the
set of outcomes (sample space), F is a o-algebra over (2
representing the set of events we are interested in, and Py € B,
where B := {5 : fweﬂ Ew)=1,¢> 0} is the set of probabil-
ity distributions, is a probability measure over J parameterized
by some tuneable parameter # € RX. In the following, we
suppress the notation of # in 6-dependent quantities.

To ease the technical exposition, in this paper we restrict
our attention to finite probability spaces, i.e., {) has a finite
number of elements. Our results can be extended to the L,-
normed spaces without loss of generality, but the details are
omitted for brevity.

We denote by Z the space of random variables Z : {2 —
(—o00,00) defined over the probability space (92, F, Py). In
this paper, a random variable Z € Z is interpreted as a cost,
and thus, the smaller the realization of Z, the better. For
Z,W € Z, we denote by Z < W the point-wise partial
order, ie., Z(w) < W(w), Yw € Q, and by E([Z] =
> wea Po(w)é(w)Z(w) a &-weighted expectation of Z.

An MDP is a tuple M = (X, A, C, P,~, xq), where X’ and
A are the state and action spaces; C(x) € [—Cimax; Cmax] 18
a bounded, deterministic, and state-dependent cost; P(-|z,a)
is the transition probability distribution; -y is a discount factor;

and x is the initial state.! Actions are chosen according to a -
parameterized stationary Markov? policy jig(-|z). Since in this
setting a policy p is uniquely defined by its parameter vector
6, policy-dependent functions can be written as a function of
0 or u, and we use p and 6 interchangeably in the paper. We
denote by xg,aq,...,zr,ar a trajectory of length T drawn
by following the policy py in the MDP.

A. Coherent Risk Measures

A risk measure is a function p : Z — R that maps an
uncertain outcome Z to the extended real line RU{+o00, —oc0},
e.g., the expectation E[Z] or the conditional value-at-risk
(CVaR) min,cp {v + éE][(Z —v)T]}. A risk measure is
called coherent, if it satisfies the following conditions for all
Z,W e Z [3]

Al Convexity: VA € [0,1], p(AZ + (1 — )W) <
Ap(Z) + (1= A)p(W);

A2 Monotonicity: if Z < W, then p(Z) < p(W);
A3 Translation invariance: Va €R, p(Z+a) = p(Z)+a;
A4 Positive homogeneity: if A > 0, then p(AZ) =

Ap(2).

Intuitively, these condition ensure the “rationality” of single-
period risk assessments: Al ensures that diversifying an in-
vestment will reduce its risk; A2 guarantees that an asset with
a higher cost for every possible scenario is indeed riskier; A3,
also known as ‘cash invariance’, means that the deterministic
part of an investment portfolio does not contribute to its risk;
the intuition behind A4 is that doubling a position in an asset
doubles its risk. We refer the readers to [3] for a more detailed
motivation of coherent risk.

The following representation theorem [6] shows an impor-
tant property of coherent risk measures that is fundamental to
our gradient-based approach.

Theorem I1.1. A risk measure p : Z — R is coherent if and
only if there exists a convex bounded and closed set U C B
such that®

Z) = max
p( ) £:EPyeU(Py)

E¢[Z]. (1
The result essentially states that any coherent risk measure
is an expectation w.r.t. a worst-case density function £ Py, i.e., a
re-weighting of Py by &, chosen adversarially from a suitable
set of test density functions U (P ), referred to as risk envelope.
Moreover, a coherent risk measure is uniquely represented by
its risk envelope. In the sequel, we shall interchangeably refer
to coherent risk measures either by their explicit functional
representation, or by their corresponding risk-envelope.

In this paper, we assume that the risk envelope U(Py) is
given in a canonical convex programming formulation and
satisfies the following conditions.

'Our results may be easily extended to random costs, state-action dependent
costs, and random initial states.

2For Markov coherent risk, the class of optimal policies is stationary
Markov [5], while this is not necessarily true for static risk. Our results can
be extended to history-dependent policies or stationary Markov policies on
a state space augmented with accumulated cost. The latter has shown to be
sufficient for optimizing the CVaR risk [30].

3When we study risk in MDPs, the risk envelope U/(Py) in Eq. 1 also
depends on the state x.
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Assumption IL.2 (The General Form of a Risk Envelope). For
each given policy parameter € RX, the risk envelope U of
a coherent risk measure can be written as

UPy) = {5139 g (6 Py) = 0, Ve € &, fi(€, Py) <0,

(2)
VieZ, Y {w)Pyw) =1, {w) > o},

weN

where each constraint g.(&, Py) is an dffine function in &,
each constraint f;(§, Py) is a convex function in &, and there
exists a strictly feasible point £&. £ and I here denote the
finite sets of equality and inequality constraints, respectively*.
Furthermore, for any given § € B, f;(&,p) and g.(§,p) are
twice differentiable in p, and there exists a M > 0 such that

dfi(&,p) dg.(§, p)

dp(w) dp(w)

Assumption IL.2 implies that the risk envelope U (Fp) is
known in an explicit form. From Theorem 6.6 of [6], in
the case of a finite probability space, p is a coherent risk
measure if and only if U/ (Py) is a convex and compact set.
This justifies the affine assumption of g. and the convex
assumption of f;. Moreover, the additional assumption on
the smoothness of the constraints holds for many popular
coherent risk measures, such as CVaR, mean-semi-deviation,
and spectral risk measures [31].

max < max
i€l

‘7 a. ’}SM,VWGQ
ecf

B. Dynamic Risk Measures

The risk measures defined above do not take into account
the temporal structure of the random variable, such as when it
is associated with the return of a trajectory in the case of
MDPs. In this sense, such risk measures are called static.
On the other hand, dynamic risk measures explicitly take
into account the temporal nature of the stochastic outcome.
A primary motivation for considering such measures is the
issue of time consistency, usually defined as follows [5]: if a
certain outcome is considered less risky in all states of the
world at stage ¢ + 1, then it should also be considered less
risky at stage ¢t. Example 2.1 in [32] shows the importance
of time consistency in the evaluation of risk in a dynamic
setting. It illustrates that for multi-period decision-making,
optimizing a static measure can lead to “time-inconsistent”
behavior. Similar paradoxical results could be obtained with
other risk metrics; we refer the readers to [5] and [32] for
further insights.

Markov Coherent Risk Measures.: Markov risk measures
were first introduced in [5] and have constituted a useful class
of dynamic time-consistent risk measures that are important to
our study of risk in MDPs. For a T-length horizon and MDP
M, the Markov coherent risk measure pp(M) is

pr(M) = C(zo)+vp (C(w1)+4 : .+w(C(IT71)+w(C(xT)))
3)

Here p is a static coherent risk measure that satisfies Assump-
tion I1.2 and xg, ..., 27 is a trajectory drawn from the MDP

4While generalizing £ and Z to countably infinite sets is an interesting
research direction from the theoretical standpoint, for practical purposes we
assume the risk envelope only contains a finite number of inequality and
equality constraints. Notice that all coherent risk metrics we are aware of in
the literature (see, e.g., [6]) are already captured by the above risk envelope.

M under policy . It is important to note that in (3), each
static coherent risk measure p at state x € X is induced by the
transition probability Py(-|z) = > . 4 P(-|z,a)pe(alz). We
also define poo (M) = limy_, o pr (M), which is well-defined
since v < 1 and the cost is bounded. We further assume that
p in (3) is a Markov risk measure, i.e., the evaluation of each
static coherent risk measure p is not allowed to depend on the
whole past.

III. PROBLEM FORMULATION

In this paper, we are interested in solving two risk-sensitive
optimization problems. Given a random variable Z and a static
coherent risk measure p as defined in Section II, the static risk
problem (SRP) is given by

mein p(2). 4)
For example, in an RL setting, Z may correspond to the cumu-
lative discounted cost Z = C(z¢) +7vC(z1) +---+v7C(zr)
of a trajectory xg,...,xr induced by an MDP with a policy
parameterized by 6.

For an MDP M and a dynamic Markov coherent risk
measure pr as defined by Eq. 3, the dynamic risk problem
(DRP) is given by

ngn Poo(M).
Except for very limited cases, there is no reason to hope that
neither the SRP in (4) nor the DRP in (5) should be tractable
problems, since the dependence of the risk measure on 6 may
be complex and non-convex. In this work, we aim towards a
more modest goal and search for a locally optimal 6. Thus, the
main problem that we are trying to solve is how to calculate
the gradients of the SRP’s and DRP’s objective functions

Vop(Z) Vopoo(M).

We are interested in non-trivial cases in which the gradients
cannot be calculated analytically. In the static case, this would
correspond to a non-trivial dependence of Z on 6. For dynamic
risk, we also consider cases where the state space is too large
for a tractable computation. Our approach to deal with such
difficult cases is through sampling. We assume that in the static
case, we may obtain i.i.d. samples of the random variable Z.
For the dynamic case, we assume that for each state and action
(z,a) of the MDP, we may obtain i.i.d. samples of the next
state 2’ ~ P(-|x,a). We show that sampling may indeed be
used in both cases to devise suitable gradient estimators.
Finally, to solve the SRP and DRP problems, a gradient
estimate may be plugged into a standard stochastic gradient
descent (SGD) algorithm to learn a locally optimal solution
to (4) and (5). From the structure of the dynamic risk in (3),
one may think that a gradient estimator for p(Z) may help us
to estimate the gradient Vgpoo(M). We follow this idea and
begin with estimating the gradient in the case of static risk.

S

and

IV. GRADIENT FORMULA FOR STATIC RISK

In this section, we consider a static coherent risk measure
p(Z) and propose sampling-based estimators for Vyp(Z). We
make the following assumption on the policy parametrization,
which is standard in the policy gradient literature [22].

Assumption IV.1. The likelihood ratio Vglog P(w) is well-
defined (i.e., log P(w) is a differentiable function in 6 in cases
when P(w) # 0) and bounded for all w € .
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Moreover, our approach implicitly assumes that given some
w € Q, Vglog P(w) may be easily calculated, which is a
standard requirement for policy-gradient algorithms. In many
applications, such as in [9], [10], [11], the probability P(w)
can be decomposed into a product of an unknown stochastic
variable that is independent of the control parameter 6, encom-
passing the stochastic dynamics in the problem, and a known
random variable that represents decisions and depends on 6.
In such cases, Vg log P(w) will only require the gradient of
the known decision component in P(w). Our experiments in
Section VI provide an illustration of this idea, and a compre-
hensive treatment can be found in the survey by Fu [33].

Using Theorem II.1 and Assumption II.2, for each 6, we
have that p(Z) is the solution to the convex optimization
problem (1) (for that value of #). The Lagrangian function
of (1), denoted by Lg (¢, A\, A€, A7), may be written as

L9(§) AP’ )‘ga )‘I)

= Zf(w)Pg(w)Z(w)—)\P (ZE(Q))PQ(W)l) (6)
weN weN

= > XE(e)ge(& Po) = > X() fi(6, Po).
ecf i€T

The convexity of (1) and its strict feasibility due to Assump-
tion I1.2 implies that Ly(¢, A7, A%, A7) has a non-empty set
of saddle points S. The next theorem presents a formula for
the gradient Vyp(Z). As we shall subsequently show, this
formula is particularly convenient for devising sampling-based
estimators for Vyp(Z).

Theorem IV.2. Let Assum tzons 11.2 and IV.I1 hold. For any
saddle point (&5, ), )\ ’ ) € S of (6), we have that

Vop(Z) = Ee; [vg log P(w)(Z — \y'P)

*Z/\ Vege favpﬁ)
ecé

=S AV i€ Po).
1€l

The proof of this theorem, given in Appendix B, involves
an application of the Envelope theorem [34] and a standard
“likelihood-ratio” trick. We now demonstrate the utility of
Theorem IV.2 with several examples. The details of deriving
these results are in Appendix A.

A. Example 1: CVaR

The CVaR at level @ € [0,1] of a random variable Z,
denoted by pcvar(Z; ), is a very popular coherent risk
measure [2], defined as

—t)4] }-

When Z is continuous, pcvar(Z; ) is well-known to be the
mean of the a-tail distribution of Z, E [Z| Z > q,], where g,
is a (1 — a)-quantile of Z. Thus, selecting a small « makes
CVaR particularly sensitive to rare, but very high costs.

The risk envelope for CVaR is known to be [6]

U={EPy:Ew) 0,07, D &w)Py(w) =1},

weN

. I -1
pevar (25 ) = %Ielﬂg {t+a'E[(Z

Furthermore, it is shown in [6] that the saddle points of (6)
satisfy &5 (w) = o' when Z( ) > Ay P and &(w) = 0
when Z(w) < )\Z’P, where \;'” is any ( «)-quantile of Z.
Plugging this result into Theorem IV.2, we can show that

E [VH IOgP(w)(Z - Qa)‘ Z(w) > Qa} . (D

This formula was recently proved in [27] for the case of
continuous distributions by an explicit calculation of the con-
ditional expectation and under several additional smoothness
assumptions. Here we show that it holds regardless of these
assumptions and in the discrete case as well. Our proof is also
considerably simpler.

Vopcvar (Z; o) =

B. Example 2: Mean-Semideviation

The semi-deviation of a raln(210m variable Z is defined as
SD[Z] = (E [(Z - E[Z])2]) ’* The semi-deviation captures
the variation of the cost only above its mean, and is an
appealing alternative to the standard deviation, which does
not distinguish between the variability of upside and downside
deviations. For some « € [0, 1], the mean-semideviation risk
measure is defined as pysp(Z; @) = E[Z] + aSD|[Z], and is
a coherent risk measure [6]. We have the following result:

Proposition IV.3. Under Assumption IV.1, with VoE [Z] =
E [Volog P(w)Z], we have

Vopusp(Z; o) = VoE [Z]+
aE [(Z-E[Z])+(Velog P(w)(Z-E|[Z])
SD(Z7)

The proof of Proposition IV.3 is given in Appendix A.
Proposition IV.3 can be used to devise a sampling-based
estimator for Vypmsp(Z; o) by replacing all the expectations
with sample averages. The resulting algorithm, which we term
GMSD (Gradient of Mean Semi-Deviation), is described next.
Let z1,...,2ny ~ Py denote an i.i.d. sequence of samples. We
propose the following estimates:

~VoE[Z])]

— — a 1& —
Vop(Z) = VoE[Z] mﬁ izzl(zi—E[ZDer
« (Valog P(a)s ~ ETZD) - VB (2)).

In Section VI, we provide a numerical illustration of opti-
mization with a mean-semideviation objective, using the GMSD
algorithm.

C. General Gradient Estimation Algorithm

In the two previous examples, we obtained a gradient
formula by analytically calculating the Lagrangian saddle
point (6) and plugging it into the formula of Theorem IV.2.
We now consider a general coherent risk p(Z) for which,
in contrast to the CVaR and mean-semideviation cases, the
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Lagrangian saddle-point is not known analytically. We only
assume that we know the structure of the risk-envelope as
given by (2). We show that in this case, Vyp(Z) may be
estimated using a sample average approximation (SAA; [6])
of the formula in Theorem IV.2.

Assume that we are given N i.i.d. samples w; ~ Py,
i=1,...,N, and let Py,y(w) = £+ SN T{w; = w} denote
the corresponding empirical distribution. Also, let the sample
risk envelope U(Py,n) be defined according to Eq. 2 with Py
replaced by Py, . Consider the following SAA version of the
optimization in Eq. 1:

pN(Z) = &PMIPE%PGN) Z Po,n (wi)€(wi) Z (wi).

®)

Note that (8) defines a convex optimization problem with
O(N) variables and constraints. In the following, we as-
sume that a solution to (8) may be computed efficiently
using standard convex programming tools such as interior
point methods [35] Let 59 n denote a solution to (8) and

Al x, Ap; & )\9 v denote the corresponding KKT multipliers,
which can be obtained from the convex programming algo-
rithm [35]. We propose the following estimator for the gradient
in Theorem IV.2:

N
VS;NP(Z):ZPG;N(wi)fg;N(wi)Ve 1ng(wi)(Z(wi)*)\Z;E)
=1
*ZAeN )Voge(&o.ns Pos) ZA ())Va fi(&o.ns Pov)-
ec& €T

Thus, our gradient estimation algorithm is a two-step proce-
dure involving both sampling and convex programming. In
the following, we show that under some conditions on the set
U(Py), Vo.np(Z) is a consistent estimator of Vgp(Z). The
proof is in Appendix C.

Proposition IV4. Let Assumptions 11.2 and IV.1 hold. Suppose
there exists a compact set C' = C¢ X C) such that: (I) The set of
Lagrangian saddle points S C C' is non-empty and bounded.
(II) The functions f.(&, Py) for all e € € and f;(§, Py) for
all i € T are finite-valued and continuous (in &) on Ce. (IIl)
For N large enough, the set Sy is non-empty and Sy C C
w.p. 1. Further assume that: (IV) If {nPo.n € U(Po.n) and
En converges w.p. 1 to a point &, then {Py € U(Py). We then
have that impy _, pn(Z) = p(Z) and impy_,o0 Vo.np(Z) =
Vop(Z) wp. 1.

The set of assumptions for Proposition IV.4 is large, but
rather mild. Note that (I) is implied by the Slater condition of
Assumption II.2. For satisfying (IIT), we need that the risk be
well-defined for every empirical distribution, which is a natural
requirement. Since Py, y always converges to P uniformly on
Q, (IV) essentially requires smoothness of the constraints. We
remark that in particular, constraints (I) to (IV) are satisfied
for the popular CVaR, mean-semideviation, and spectral risk.

It is interesting to compare the performance of the SAA
estimator (9) with the analytical-solution based estimator, as
in Sections IV-A and IV-B. In Section VI-B, we report an
empirical comparison between the two approaches for the case
of CVaR risk, which shows that the two approaches performed
very similarly. This is well-expected, since in general, both
SAA and standard likelihood-ratio based estimators obey the
law-of-large-numbers with variance bound of order 1/ VN [6].

To summarize this section, we have seen that by exploiting
the special structure of coherent risk measures in Theorem II.1

and by the envelope-theorem style result of Theorem IV.2,
we are able to derive sampling-based likelihood-ratio style
algorithms for estimating the policy gradient Vyp(Z) of co-
herent static risk measures. The gradient estimation algorithms
developed here for static risk measures will be used as a sub-
routine in our subsequent treatment of dynamic risk measures.

V. GRADIENT FORMULA FOR DYNAMIC RISK

In this section, we first derive a new formula for the
gradient of a general Markov-coherent dynamic risk measure
Vopoo(M) that involves the value function of the risk ob-
jective poo (M) (e.g., the value function proposed by [5]).
This formula extends the well-known “policy gradient theo-
rem” [36], [8] developed for the expected return to Markov-
coherent dynamic risk measures. Using this formula, we
suggest the following actor-critic style algorithm for estimating
Vg Poo (M)

e Critic: For a given policy 6, calculate the risk-sensitive

value function of p, (M) (see Section V-B), and

e Actor: Using the critic’s value function, estimate

Vopso(M) by sampling (see Section V-C).

The value function proposed by [5] assigns to each state a
particular value that encodes the long-term risk starting from
that state. When the state space X is large, calculating the
value function by dynamic programming (as suggested by [5])
becomes intractable due to the “curse of dimensionality”. For
the risk-neutral case, a standard solution to this problem is
to approximate the value function by a set of state-dependent
features, and use sampling to calculate the parameters of this
approximation [37]. In particular, temporal difference (TD)
learning methods [38] are popular for this purpose, which
have been recently extended to robust MDPs by [20]. We
use their (robust) TD algorithm and show how our critic use
it to approximates the risk-sensitive value function. We then
discuss how the error introduced by this approximation affects
the gradient estimate of the actor.

A. Risk-Sensitive Bellman Equation

Our value-function estimation method is driven by a
Bellman-style equation for Markov coherent risks. Let B(X)
denote the space of real-valued bounded functions on X,
we now define the risk sensitive Bellman operator Ty[V] :
B(X)+— B(X) as

To[V](x) = max Eep( e o -1z [C (2, @)V (Z)],
Vi) =, pmax, - Eeptiaeu (e [C(@, @)+ ((9))]

where @ € A and T € X are random variables such that
(@,%) ~ po(alx)P(z'|z,a). According to Theorem 1 in [5],
the operator T has a unique fixed-point Vp, i.e., Ty[Vy](x) =
Vo(x), Yz € X, that is equal to the risk objective function
induced by 6, i.e., Vp(z0) = poo(M). However, when the state
space X is large, exact enumeration of the Bellman equation is
intractable due to “curse of dimensionality”. Next, we provide
an iterative approach to approximate the risk sensitive value
function.

B. Value Function Approximation

Consider the linear approximation of the risk-sensitive value
function Vy(z) ~ v'¢(x), where ¢(-) € R"2 is the ko-
dimensional state-dependent feature vector. Thus, the approx-
imate value function belongs to the low dimensional sub-
space V = {®vlv € R"}, where ® : X — R"2 is a
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function mapping such that ®(z) = ¢(x). The goal of our
critric is to find a good approximation of Vy from simulated
trajectories of the MDP. In order to have a well-defined
approximation scheme, we first impose the following standard
assumption [37].

Assumption V.1. The mapping ® has full column rank.

For a function y : X — R, we define its weighted (by
d) ly-norm as |ylla = />, d(@'[z)y(z")?, where d is a
distribution over X. Using this, we define II : X — V), the
orthogonal projection from R to V, w.r.t. a norm weighted by
the stationary distribution of the policy, dy(z’|x).

Note that the TD methods approximate the value function
Vi with the fixed-point of the projected Bellman operator 117,
ie., Vo(z) = v} T é(z), such that

Vr € X, Vo(x) = Ty[Vy) (). (10)

From Eq. 1 that has been derived from Theorem II.1 for
dynamic risks, it is easy to see that the risk-sensitive Bellman
equation (9) is a robust Bellman equation [17] with uncertainty
set U(x, P(-|z,)uo(-]x)). Thus, we may use the TD approxi-
mation of the robust Bellman equation proposed by [20] to
find an approximation of Vj. We will need the following
assumption analogous to Assumption 2 in [20].

Assumption V.2. There exists k € (0,1) such that &(a,z") <
) a

K/, for all £()P(:|z,-)ue(-|x) € U(x, P(-|x, )uo(-|x)) and
all z,7' € X, a € A

Given Assumption V.2, Proposition 3 in [20] guarantees
that the projected risk-sensitive Bellman operator 17}y is
a contraction w.r.t. the dg-norm. Therefore, Eq. 10 has a
unique fixed-point solution Vy(z) = v; ' ¢(x). This means
that v € R"* satisfies v; € argmin, || Ty[®v] — ®v[|7,. B
the projection theorem on Hilbert spaces, the orthogonality
condition for vg becomes

Ty = Z do(z|xo) @

Z do(z|xo)p
reX

reX
max Eepizu. 1) [C (2, @) +y®(Z)vy].
et PO ey TPl ()| O(@: @) 7 (@]
As a result, given a long enough trajectory zq, ag, 1, a1,
. TN_1, an—1 generated by policy 6, we may estimate the
fixed-point solution v; using the projected risk sensitive value
iteration (PRSVI) algorithm with the update rule

N-1 -1 N-1
V1 = (;, > ¢($t)¢($t)T> []1, > blar)
t=0 t=0

max

Eep( 1z, o -z [C (2, @) +7P(Z)vi] | -
et (e, PP ypo (e E C1Eedma ] S[C(x, @)+ () k]}

1D
Note that using the law of large numbers, as both N and &
tend to infinity, v converges w.p. 1 to vy, the unique solution
of the fixed point equation II7Ty[Pv] = Dw.
In order to implement the iterative algorithm (11), one must
repeatedly solve the inner optimization problem

max Eep(iz. -1y [C(2,0) +yP(Z)v].
oPonn ettt B o gy TP Ul (1) [O(2, D) +72(@)e]

SHere we denote by 1Ty the projected Bellman operator. In particular, for
the parameterized value function T ' ¢(z) = Vp(x), the expression Vy(z) =
IITy[Vp](x) is a short hand of the following optimization problem: ¥ €
argmin, Y-, dg(z|z0) (v ¢(z) — To[v" ¢](2))*.

When the state space X is large, solving this optimiza-
tion problem is often computationally expensive or even in-
tractable. Similar to Section 3.4 of [20], we propose the follow-
ing SAA approach to solve this problem. For the trajectory, =g,
ag, Ti, 1, .., TN_1, GN_1, WE deﬁne the empirical transi-
Zf 0 1{xt T, ar=a, Ti41= 7'}6

Z,ﬁv 11{xt z, ar=a}
Consider the followmg {a-regularized eomplrlcal robust opti-

mization problem’
o (Cl,@) +78(3)) =

max
eett (e, Py, (12, g (1))

tion probability Py (z'|x,a) =

(12)
> Poun(@|z,a)pe(alz)é(a, 2)

ac Az’ eX
(€@ a) +70" @ + 5tlaa)].

As in [39], the ¢p-regularization term in this optimization
problem guarantees convergence of the optimizers £* and the
corresponding KKT multipliers, when N — oo. Convergence
of these parameters is crucial for the policy gradient analysis
in the next sections. We denote by 59 2N the solution of the

above emplncal optimization problem, and by /\9 2N )\Z’i N

and /\ 2. N> the corresponding KKT multipliers. We obtain the
empmcal PRSVI algorithm by replacing

max Eep(1z, Yuo 1o [C(xe, @) + vP(Z) v,
cctt(or P oy TPl o (o) [C @0, @) + 7 @(F)g]
in Eq. 11 with its SAA approximation py (C(z,a) +v®(Z)v)
from Eq. 12. Similarly, as both NV and k tend to infinity, v
converges w.p. 1 to vj. Details can be found in Appendix D.

C. Gradient Estimation

In Section V-B, we showed that we may effectively ap-
proximate the value function of a fixed policy 6 using the
(empirical) PRSVI algorithm in Eq. 11. In this section, we
first derive a formula for the gradient of the Markov-coherent
dynamic risk measure p..(M), and then propose a SAA
algorithm for estimating this gradient, in which we use the
SAA approximation of value function from Section V-B. As
described in Section V-A, poo (M) = Vpy(xg), and thus, we
shall first derive a formula for VyVy(xo).

Let (&5, ;:,)\; i,)\* I) be the saddle point of (6) cor-
responding to the state £ € AX. In many common coher-
ent risk measures such as CVaR and mean semi-deviation,
there are closed-form formulas for {5 , and KKT multipliers

Ay, . o) Ny I) We will briefly discuss the case when the
saddle point does not have an explicit solution later in this
section. Before analyzing the gradient estimation, we have the
following standard assumption in analogous to Assumption
IV.1 of the static case.

Assumption V.3. The likelihood ratio Vg log pg(a|x) is well-
defined and bounded for all x € X and a € A.

As in Theorem IV.2 for static case, we may use the envelope
theorem and the risk-sensitive Bellman equation,

Vo(z) = Eep(la, o (o) [C (2, @)+ Vo (Z)]

seu(x, P( \»% e (-12))

SIn the case when the sizes of state and action spaces are huge or when
these spaces are continuous, the empirical transition probability can be found
by kernel density estimation.

7In the SAA approach, we only sum over the elements for which
Py, N (2'|z,a) > 0, thus, the sum has at most N elements.

)
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to derive a formula for VyVp(x). We report this result in
Theorem V.4, which is analogous to the risk-neutral policy
gradient theorem [36], [8], [40]. The proof is in Appendix E.

Theorem V.4. Under Assumptions I1.2 and V.3, the gradient
of the value function can be expressed as

=Ee: | > 7'V log o (as|z)ho(we.ar) | zo=z | ,
t=0

VVe(z)

where EE;H denotes the expectation w.r.t. trajectories gen-
erated by a Markov decision process with action probability
po(+|x), transition probability P(-|x, )& (-, -), and the stage-
wise cost function hg(x,a) is defined as

he(z,a) = C(z,a)+ > P(2'|z,a)€5 . (a, « )[We(m’) N7

z'eXx
=D An)

df’L 56 J,?p dge 60 L?p)
AL 7, . (13)
"]

/
dp m ecé

Notice that the dynamic risk presented in this paper is a
composition of static risks. In order to derive the stage-wise
cost function hg(z,a) in (13), one simply applies the result
from Theorem IV.2 as follows: The sample space corresponds
to the state space X of the MDP, the probability distribution is
given by the transition kernel P(-|x, a) (conditioned on current
state « and action a), and the random variable Z is the sum
of stage-wise cost and value function (C(x,a) + vVy(z')).

Theorem V.4 indicates that the policy gradient of
the Markov-coherent dynamic risk measure po. (M),

e., Vopoo(M) = VyVp, is equivalent to the risk-neutral
value function of policy § in a MDP with the stage-wise
cost function Vg log pg(a|x)he(z,a) (which is well-defined
and bounded), action probability pug(-|x), and transition
probability P(-|x,-)§5 ,(-,-). Thus, when the saddle points
are known and the state space X is not too large, we can
compute VyVjy using a policy evaluation algorithm. However,
when the state space is large, exact calculation of VVj
by policy evaluation becomes impossible, and our goal
would be to derive a sampling method to estimate VVj.
Unfortunately, since the risk envelop depends on the policy
parameter 6, unlike the risk-neutral case, the risk sensitive
(or robust) Bellman equation Typ[Vp](z) in (9) is nonlinear
in the stationary Markov policy pg. Thus, hg cannot be
considered using the action-value function (Q-function) of
the robust MDP. Therefore, even if the exact formulation
of the value function Vp is known, it is computationally
intractable to enumerate the summation over z’ to compute
hg(xz,a). On top of that, in most applications with a large
or continuous state space, the value function Vj cannot be
accurately calculated, due to the ’curse of dimensionality’
[13]; this further complicates the gradient estimation process.
To estimate the policy gradient when the value function is
unknown, we approximate it by the projected risk sensitive
value function ®vg. To address the sampling issues, we
propose the following two-phase sampling procedure for
estimating VVj.

(1) Generate N trajectories {xgj),a(gj),xgj),agj),... ;-Vzl
from the Markov decision process with action proba-
bility jg(-|x) and transition probability P&(-|z,-) =

(2) For each state-action pair (2, a")) = (z, a), generate
N samples {y*)}V_| using the transition probability P(-|x, a)

and calculate the following empirical average estimate of
h9 (x,a):

ho.n(z,a) == C(z,a) N ngw a, y )[’7 ¢( (k))

=X = D Ml

i€l

dfz 59 xap) *,E dge(£;7wap)
) apy®) _G;A“(e) dp(y™®) 1

(3) Calculate an estimate of VVj using the following
average over all the samples:

N oo
% 3> 4"V log g af

j=1t=0

J) \xﬁj))he,w(:vgj), agj)).

Indeed, by the definition of empirical transition probability
Pn(2'|z,a), hg n(x, a) can be re-written as in the same struc-
ture of hg(x, a), except by replacing the transition probability
P(z'|x,a) with Py (2'|z,a).

To compare the above algorithm with the policy gradient al-
gorithm in static risk optimization, notice that with the gradient
of the static risk objective function, one can immediately apply
the policy gradient algorithm to compute the optimal policy
using the Monte-Carlo estimate of the objective function. On
the other hand, under the assumption of a Markov decision
process and the framework of dynamic risk optimization, the
algorithm in steps 1-3 resembles an actor-critic method where
the function approximation of the risk sensitive value function,
instead of the Monte-Carlo estimate, is used to calculate the
policy gradient.

Furthermore, in the case that the saddle points
(& 2> Zf,)\;i,k* ) do not have a closed-form solution,
we may follow the SAA procedure of Section V-B and
replace them and the transition probabilities P(x'|z,a) with
their sample estimates (&5 ..y )\;:Z/’);N’ )\;Zi;N, )\;jf;N) and
Py (2'|x, a), respectively. '

Finally, we show the convergence of the above two-phase
sampling procedure. Let dg(z|xg) and my(x,alzo) be the
state and state-action occupancy measure induced by the
transition probability P*(-|z, -) and action probability ps(-|z),
respectively. Similarly, let dg.n(z|xo) and 7o.n(x,alzg) be
the state and state-action occupancy measure induced by the
action probability pp(-|z) and estimated transition probability
function P(iN(-|1}, ) =& 2.n (5 ) Po,n (|2, ). From the two-
phase sampling procedure for policy gradient estimation and
by the strong law of large numbers, when N — oo, with
probability 1, we have that

1 N oo ]
N szytl{x?) =,

j=1t=0

agj) =a} = mg.n(z, alzg).

Based on the strongly convex property of the ¢5-regularized
objective function in the inner robust optimization problem
pn(Pv), we can show that both the state-action occupancy
measure mg.n (%, alry) and the stage-wise cost hg.n(x,a)
converge to the their true values within a value function
approximation error bound A = || v} — Vp||co. We refer the
readers to Appendix F for these technical results. These results
together with Theorem V.4 imply the consistency of the policy
gradient estimation.
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Theorem V.5. The following expression holds almost surely:

N oo
1
‘NIE&ZIZO”  log o (a9 129 ho x (29, a)
7 t

7VV9(:E()) = O(A), Vxg € X.

Thm. V.5 guarantees that as the value function approxima-
tion error decreases and the number of samples increases, the
sampled gradient converges to the true gradient.

VI. NUMERICAL ILLUSTRATION

In this section, we illustrate our approach with several
numerical examples. The purpose of this illustration is to em-
phasize the importance of flexibility in designing risk criteria
for selecting an appropriate risk-measure — such that suits both
the user’s risk preference and the problem-specific properties.

A. Example 1: Single-Step Horizon Asset Allocation

We consider a trading agent that can invest in one of three
assets (see Figure 1 for their distributions). The returns of
the first two assets, A1 and A2, are normally distributed:
Al ~ N(1,1) and A2 ~ N(4,6). The return of the third
asset A3 has a Pareto distribution: f(z) = %+ Vz > 1, with
a = 1.5. The mean of the return from A3 is 3 and its variance
is infinite; such heavy-tailed distributions are widely used in
financial modeling [41]. The agent selects an action randomly,
with probability P(A;) oc exp(6;), where 6 € R3 is the policy
parameter. We trained three different policies my, 7o, and 73.
Policy m is risk-neutral, i.e., maxy E [Z], and it was trained
using standard policy gradient [22]. Policy 75 is risk-averse
and had a mean-semideviation objective maxy E [Z] — SD[Z],
and was trained using the algorithm in Section I'V. Policy 3 is
also risk-averse, with a mean-standard-deviation objective, as
proposed in [24], [25], maxy E [Z]—+/Var[Z], and was trained
using the algorithm of [24]. For each of these policies, Figure 1
shows the probability of selecting each asset vs. training
iterations. Although A2 has the highest mean return, the risk-
averse policy mo chooses A3, since it has a lower downside,
as expected. However, because of the heavy upper-tail of A3,
policy 73 opted to choose A1 instead. This is counter-intuitive
as a rational investor should not avert high returns. In fact, in
this case A3 stochastically dominates A1 [42].

We clarify that in these experiments, the probability dis-
tribution of the returns was not given to the algorithm,
which only requires samples from this distribution. This
is since the probability of the return can be written as
P(Z) = P(A;)P(Z|A;), and P(Z|A;) does not depend on
0, therefore the term Vylog P(Z) in the algorithms satisfies
Volog P(Z) = Vylog P(A;). Thus, algorithmically, any
black-box simulator of returns could have been used instead
of the distributions reported here.

B. Example 2: Empirical Comparison of Analytical-Solution-
Based and SAA-Based Policy Gradient

In this example, we compare the CVaR policy gradient as
obtained by the analytical result in Eq. 7 with the general
sampling-based algorithm of Eq. 9.

For the analytical-solution-based policy gradient, we use the
GCVaR algorithm [27], which is the sampling-based version of
Eq. 7. For the sampling-based algorithm, we solve the linear
program in Eq. 8 from Section IV-A with the risk envelope

Return distribution Mean
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Fig. 1. Numerical illustration - selection between 3 assets. A: Probability
density of asset return. B,C,D: Bar plots of the probability of selecting each
asset vs. training iterations, for policies 71, 72, and 73, respectively. At each
iteration, 10,000 samples were used for gradient estimation.

for CVaR. The resultant numerical values for ;. 5 and )\ZE
were plugged into Eq. 9 for the gradient estimate (using the
CVaR risk envelope, all other terms in Eq. 9 vanish).

We present empirical results for the asset selection do-
main of Example 1. We chose a CVaR level of a = 0.05
(corresponding to the average of the worst 5% outcomes),
and trained policies with either the analytical-solution-based
policy gradient (labeled CVaR), and the general sampling-
based algorithm (labeled CVaRS). In Figure 2, we plot the
learning curves (the € values vs. training episodes) of both
policies, for different values of the sampling budget N.

As one can observe, both policies exhibit similar learning
performance and the differences diminish as N grows. This
verifies our theoretical findings on consistency of policy gradi-
ent with sample average approximation (i.e., Proposition IV.4).

C. Example 3: American Option Trading

We empirically evaluate our algorithms on the Ameri-
can put option domain: a standard testbed for risk-sensitive
RL [43], [20], [26]. In our setting, the state is continuous
and represents the price of some stock. It evolves according
to a geometric Brownian motion (GBM), i.e., xyy1/a: ~
N (e — 07/2,07), where In\V is the log-normal distribu-
tion and u; and oy are parameters. The action at each time ¢ is
binary. An execution action generates reward max{0, K —z;},
where K is fixed and known as the strike price, and termi-
nates the episode; A hold action generates zero reward, and
the price transitions to z;1; as described above. Unless an
execution occurred, the episode ends after 7" steps, with reward
max{0, K —zr}. For the expected return, the optimal policy is
a time dependent threshold policy that holds if x; > 6, [44],
where 6, is the threshold, and executes, otherwise. Accord-
ingly, we search in the space of soft-threshold policies of
the form pg(hold|z;) = (:m g.yy» for some softness

14exp(—
parameter 5 > 0.
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Fig. 2. Learning curves (6 vs. training episodes) of the analytical-solution-
based policy gradient (labeled CVaR), and the general sampling-based algo-
rithm (labeled CVaRS), for different values of the sampling budget N.

We consider a case where the option is ‘deep in the money’,
i.e., x9 < K. For such a case, the decision-maker may execute
immediately and earn reward K — xg, but may also wait for
a better price with the risk of never getting it on time.

We trained policies to optimize the static CVaR(aw = 0.3),
CVaR(« = 0.6), 0.9 - Expectation + 0.1 - CVaR(« = 0.3), and
Expectation — 0.1 - Semideviation, using stochastic gradient
descent. The gradient for the expectation was calculated using
standard (episodic) policy gradient [22]; the gradient for CVaR
was calculated according to the derivation in Section IV-A,
using the GCVaR algorithm [27]; and the gradient for mean-
semideviation was calculated using the GMSD algorithm of
Section IV-B. In Figure 3, we plot the histograms of the payoff
of the different policies. The risk-averse nature of the policies
trained with a risk-sensitive objective may be observed. In our
experiments we set K = 1 and xg = 0.5. The CVaR(a = 0.3)
was very conservative, chose to execute immediately, and
received a reward of 0.5. The CVaR(a = 0.6) was less
conservative, but still had lower variability than the standard
expectation objective policy.

We also trained policies to optimize the dynamic CVaR(a =
0.6) risk, dynamic 0.95 - Expectation + 0.05 - CVaR(a = 0.3)
risk, and dynamic 0.98-Expectation+0.02-CVaR (a: = 0.3) risk
using stochastic gradient descent, with the gradient calculated
according to the algorithm of Section V. We used RBF features
for estimating the value function. In Figure 4, we plot the
histograms of the payoff of different policies. The dynamic
CVaR(a = 0.6) was very conservative and chose to execute
immediately. This also occurred with higher values of «, such
as a = 0.8. One way to reduce conservatism in dynamic
risk, while still maintaining control of reward variability, is
to use the combination of expectation and CVaR. As Figure 4
demonstrates, this is indeed a practical approach.

D. Example 4: Optimal Execution in Portfolio Optimization

In this example, we consider the optimal trade execution
in quantitative finance, where the objective is to design a
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Fig. 3. Reward histogram for various static risk-sensitive policies.
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Fig. 4. Reward histogram for various dynamic risk-sensitive policies.

strategy that sells (respectively, buys) X shares of a given
stock within a fixed time period (or horizon) 7, in a manner
that maximizes the revenue received (respectively, minimizes
the capital spent). Similar to [45], [46], we describe stock
evolution using the classical Almgren-Chriss [47] model with
linear price impact. This model is popular amongst sell-side in-
stitutions as a basis for arrival price benchmark algorithms. By
formulating our problem as a finite-horizon MDP, we hereby
apply the risk sensitive reinforcement learning algorithms
to find near-optimal trade-execution strategies that maximize
expected reward while controlling 1) tail risk (modeled by
CVaR) or 2) downside variance (modeled by semi-deviation).

Based on the descriptions of [47], the trading model and
price dynamics are characterized by the following finite-
horizon MDP (X, A, R, P, x¢),} where X = {0,..., X} x
{0,...,T} is the combined state space of the unliquidated
financial securities and passage of time, A = {0,...,X}

8In contrary to the cost minimization MDP used in the main paper, in this
example we adopt the reward maximization framework.
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is the action space of executable units at each time step,
R : X xAx§Q — Ris the immediate reward incurred
from trading, P is the evolution of the trading trajectory, and
xo = (X,0) is the combined initial state of security block-
size and starting time. For simplicity, we assume deterministic
portfolio execution, i.e., given state x; and action a;, the next
state is given by

Tre1(1) = 2e(1) — ar, 2141(2) = 2e41(2) + 1.

Furthermore the immediate reward incurred by executing a
trade is given by

R(zy, ar,wp) = (owy — g(ar))ze — arh(ay),

where w; is the uncertain price fluctuation modeled by an
independent white noise process with mean 0 and variance 1,
o is the random price volatility (variance), g : A — R is the
linear permanent impact function given by g(a;) = La; with
linear impact factor L > 0, and h : A — R is the temporary
impact function given by g(a;) = esgn(as)+na; with absolute
impact factor ¢ > 0 and quadratic impact factor n > 0.
Therefore, the objective function is to find an optimal trading
strategy that maximizes p(R) := p (ZtT:o fth(a:t,at,wt)),
where the discounting factor is v = 1 and p is the coherent
risk of interest. Followed from the benchmark example in [47],
we set 0 = 0.95, L = 0.25, ¢ = 0.725, and n = 0.25. In the
following experiments, we set the horizon of the trading model
to T' = 15 and the size of financial security to X = 10. Also
for the RL algorithms of this experiment, we use RBF features
for value function approximation and the class of Boltzmann
policies for policy parameterization.

Similar to the optimal stopping example, we trained policies
to optimize static CVaR(a = 0.25), 0.5 - Expectation + 0.5 -
CVaR(a = 0.25), and 0.5 - Expectation — 0.5 - Semideviation.
In Table I, we provide the statistics obtained from different
policies. Again the risk-averse nature of the policies was
observed. The CVaR(a = 0.25) was conservative (reward was
23% lower than risk neutral policies), but the worst case expec-
tation corresponding to this policy was well-controlled (CVaR
was 15% lower than the risk-neutral policy). On the other
hand, the risk-sensitive policies from 0.5 - Expectation + 0.5 -
CVaR(a = 0.25) and 0.5-Expectation—0.5-Semideviation bal-
anced the trade-offs between reward/CVaR and reward/semi-
deviation, respectively. Note that there is indeed a tradeoff
— the CVaR-sensitive policy had better (higher) CVaR and
worse (higher) semi-deviation compared to the semi-deviation
sensitive policy, and vice-versa. Thus, compared to the theo-
retical mean-variance optimization in [47], our risk-sensitive
policy-gradient approach has an advantage when the investor’s
desired risk-profile is different than a mean-variance-based risk
criterion.

E(R) [ o(R) [ CVaR(R) [ SD[R]
PG —2I.14 | 26.18 | —54.29 | 18.45
PG-CVaR —2641 | 1346 | —42.63 | 9.52
PG-Mean-CVaR | —23.81 | 1479 | —43.95 | 10.42
PG-Mean-SD | —27.52 | 1249 | —4417 | B8.81I
TABLE I

PERFORMANCE COMPARISON OF THE POLICIES LEARNED BY THE
RISK-SENSITIVE ALGORITHMS. HERE OPTIMIZATION WITH EXPECTATION
RISK YIELDS A LOWEST MEAN COST, WHILE OPTIMIZATION WITH CVAR

AND MEAN-CVAR TRADES-OFF MEAN COST AND WORST-CASE COST,
AND OPTIMIZATION WITH MEAN-SEMI-DEVIATION YIELDS THE LOWEST
VARIABILITY.

VII. DISCUSSION AND CONCLUSION

We presented algorithms for estimating the gradient of both
static and dynamic coherent risk measures using two new
policy gradient style formulas that combine sampling with
convex programming. Thereby, our approach extends risk-
sensitive RL to the whole class of coherent risk measures and
generalizes several recent studies that focused on specific risk
measures.

On the technical side, an important future direction is to
improve the convergence rate of gradient estimates using
importance sampling methods. This is especially important for
risk criteria that are sensitive to rare events, such as CVaR [48].

From a more conceptual point of view, the coherent-risk
framework explored in this work provides the decision-maker
with flexibility in designing risk preference. As our numerical
examples show, such flexibility is important for selecting
appropriate problem-specific risk measures for managing the
cost variability. However, we believe that our approach has
much more potential than that.

In almost every real-world application, uncertainty emanates
from stochastic dynamics, but also, and perhaps more impor-
tantly, from modeling errors (model uncertainty). A prudent
policy should protect against both types of uncertainties.
The representation duality of coherent-risk (Theorem II.1),
naturally relates the risk to model uncertainty. For model-
uncertainty in MDPs, a similar connection was made with
dynamic Markov coherent risk [49] and static CVaR risk [50].
Therefore, we believe that by carefully shaping the risk-
criterion, the decision-maker may be able to take uncertainty
into account in a broad sense. Designing a principled pro-
cedure for such risk-shaping is not trivial and is beyond the
scope of this paper. However, we believe that there is much
potential to risk-shaping as it may be the key for handling
model misspecification in dynamic decision-making.
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APPENDIX
A. Gradient Results for Static Mean-Semideviation

In this section we consider the mean-semideviation risk
measure, defined as follows:
1/2
pusp(Z) =E[Z] +a (E[(Z -E[2)1]) ",
Following the derivation in [6], note that (]E UZ |2])1/ 2
IZ]|2, where || - |2 denotes the L, norm of the space
Lo(82, F, Py). The norm may also be written as:

1Z]la = sup (£, 2),
l€ll2<1

(14)

and hence

E[Z-E[2)2])"* = sw (¢.(Z-E[2])4)

ligllz<1
= sup ({,Z-E[Z])
lENl2<1,6>0
= sup ((-E[¢,2).
I€l2<1,£>0
It follows that Eq. (1) holds with
U={ezZ: {=1+af—aE[], [¢ll;<1, £>0}.

For this case it will be more convenient to write Eq. (1) in the
following form

pmsp(Z) = sup (1+af—aE[¢],Z).  (15)

l€ll4<1,620

Let fi denote an optimal solution for (15). In [6] it is shown
that ¢ is a contact point of (Z — E[Z])4, that is

¢ c argmax {(¢, (Z —E[Z])4) : [l¢ll2 < 1},
and we have that
(Z-E[Z])+

I(Z -E[Z)+l2

(Z-E[Z])+
SD(Z)

Iy

(16)

Note that £ is not necessarily a probability distribution, but for
¢ € [0, 1], it can be shown [6] that 1 + af — o [ﬂ always is.

In the following we show that £ may be used to write the
gradient Vgpmsp(Z) as an expectation, which will lead to a
sampling algorithm for the gradient.

Proposition A.1. Under Assumption IV.1, we have that

Vopusp(Z) = VoE [Z]+
SD)L(Z)E (Z —E[Z])+(Volog P(w)(Z — E[2])—V4E [Z])],
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and, according to the standard likelihood-ratio method,
VoE [Z] = E[Vglog P(w)Z].

Proof. Note that in Eq. (15) the constraints do not depend on
6. Therefore, using the envelope theorem we obtain that

Vop(Z) = Vo(l +af —aE [¢], Z)
= Vo(1,2) + aVy(€, Z) — aVy(E [E], Z).

We now write each of the terms in Eq. (17) as an expectation.
We start with the following standard likelihood-ratio result:

Vo(l,2) = VyE[Z] = E[Vylog P(w)Z] .

a7

Also, we have that
E[8).2) ~E[€E[2]
therefore, by the derivative of a product rule:
E ], Z) = V4E [E]E [Z] + E [¢] V4E [Z].
By the likelihood-ratio trick and Eq. (16) we have that

VE [E] = sm%@
Also, by the likelihood-ratio trick
VyE [EZ] =E [Vylog P(w)EZ] .
Plugging these terms back in Eq. (17), we have that

Vop(Z)
=VoE [Z]+aVE [Z] — aVeE [E]E[Z] — oF [¢] V4E [Z]
=VoE [Z]+aE [ (Volog P(w)Z—VeE[Z])] —aVeE [¢]|E[Z]
I+

E[Vglog P(w)(Z —E[Z])+].

=VoE 2]+ g5 7 B 17 —E[2))+(Vo log P(w)Z = VoE [2))
—aVyE [@E[z
=V 2]+ g5 BL(Z—E 2]+ (Vo log P)(Z-E2])

~ VeE[2])].

B. Proof of Theorem IV.2
First note from Assumption II.2 that
@) Slater’s condition holds in the primal optimization
problem (1),
(i)  Lg(&,\P A, \) is convex in ¢ and concave in
(AP, 080T,
Thus by the duality result in convex optimization [35],
the above conditions imply strong duality and we have
p(Z) = maxes>ominye, AZZ0.¢ Lo(€, AP, X8, \T)
m1n>\7> AI>0,\¢ maXe>q Lg(f /\ )\g /\I) From
Assumptlon I1.2, one can also see that the family of
functions {Lg(f )\P )\ )\ )}(5 AP \E )\I)ERM‘XRXR"S'XR‘I‘
is equi-differentiable in 6, Lg(¢, A7, A\ , A1) is Lipschitz, as
a result, an absolutely continuous functlon in 6, and thus,
V9L9(£ AP X8, M) is continuous and bounded at each
ENPNE )\5) Then for every selection of saddle point
(59, * P Y ) € S of (6), using the envelope theorem
for saddle pomt problems (see Theorem 4 of [34]), we have

L9 (57 AP) Agv AI)

V¢ max min
£20 AP AT>0,A¢

=VoLo(&, X7, X8 0D)| 1o
= oLg s 5 5 (5* *P )\*5 )\*I

)

The result follows by writing the gradient in (18) explicitly,
and using the likelihood-ratio trick:

> W) VoPy(w APy g

YWVoPy(w

we weN
= 3 E@)P)Volog PW) (Z()-A7),
we

where the last equality is justified by Assumption IV.1.

C. Proof of Proposition IV.4

Let (2544, Fsaa,Psaa) denote the probability space of
the SAA functions (i.e., the randomness due to sampling).

Let Lg.n (&, A7, A8, AT) denote the Lagrangian of the SAA
problem

L0§N(£? )‘Pv >\£7 )\I)

= D _£w)Po (@) Z(w) A" (Zf ) Posny (w 1) (19)
weR weN
= () fel& Pov) = > N (D) fil&, Poow).-
ecf €T

Recall that S € RI%l x R x RI¥I x le‘ denotes the set of
saddle points of the true Lagrangian (6). Let Sy C RI®I x
R x RI€! x R‘fl denote the set of SAA Lagrangian (19) saddle
points.

Suppose that there exists a compact set C' = C¢ x C, where
Ce CRI? and ) € R x RIEN x R such that:

@) The set of Lagrangian saddle points S C C' is non-

empty and bounded.

(ii))  The functions f.(&, Py) for all e € £ and f;(§, Py)
for all ¢ € Z are finite valued and continuous (in &)
on Ck.

For N large enough the set Sy is non-empty and
Sy C C wp. 1.

Recall from Assumption II.2 that for each fixed £ € B,
both f;(&,p) and g.(&,p) are continuous in p. Furthermore,
by the strong law of large numbers (S.L.L.N.) for Markov
chains, for each policy parameter, we have Py y — Py
w.p. 1. From the definition of the Lagrangian function
and continuity of constraint functions, one can easily see
that for each (£, AP, A€, \T) e RIl x R x RI®l x Rm
Lo.n (&, NP 08 0NT) — Lo (€, A7, 08, 0\T) w.p. 1. Denote W1th
D {A, B} the deviation of set A from set B,ie,D{A, B} =
sup,c 4 inf,cp ||z — y||. Further assume that:

(iv)

(iii)

If v € U(Pp.v) and {n converges w.p. 1 to a point

&, then & € U(Fy).

According to the discussion in Page 161 of [6], the Slater con-

dition of Assumption II.2 guarantees the following condition:
(v)  For some point £ € P there exists a sequence &y €

U(Py,n) such that En — € wap. 1,

and from Theorem 6.6 in [6], we know that both sets U (Py.n)

and U(Py) are convex and compact. Furthermore, note that we

have

(vi)  The objective function on (1) is linear, finite valued
and continuous in § on C¢ (these conditions obvi-
ously hold for almost all w € € in the integrand
function &(w)Z(w)).

(vii) S.L.L.N. holds point-wise for any &.
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From (i,iv,v,vi,vii), and under the same lines of proof as in
Theorem 5.5 of [6], we have that

pN(Z) = p(Z) wp. 1 as N — oo, (20)

D{Pn,P} — 0 wp. 1as N — oo, (1)

In part 1 and part 2 of the following proof, we
show, by following similar derivations as in Theo-
rem 5.2, Theorem 5.3 and Theorem 5.4 of [6J, that
Lon(§.n: Mo Moo o) = La(&, 007 005 00 T)
w.p. 1 and D{Sy,S} — Owp.1las N — oo. Based on
the definition of the deviation of sets, the limit point of any
element in Sy is also an element in S.

Assumptions (i) and (iii) imply that we can restrict our
attention to the set C'.

Part 1: We first show that Lg.n (&5, )\;;z, )\Zf\,, )\Zﬁ)
converges to Lo (€5, Ay ™ S X5 T) wop. 1 as N — oo.

For each fixed (AP A6, A) € (,, the function
Lo(£, A7, X¢,\T) is convex and continuous in &. Together
with the point-wise S.L.L.N. property, Theorem 7.49 of [6]
implies that Lg.n (&, A7, A8, M) — Lo(£, AP, 08, 0F) 5 0,
where 5 denotes  epi-convergence.  Furthermore,
since the objective and constraint functions are
convex in & and are finite valued on C¢, the set
domZLg(-, AP, X A\T) has non-empty interior. It follows
from Theorem 7.27 of [6] that epi-convergence of
Lgn to Ly implies uniform convergence on Cg, i.e.,
SUPgcc, |L9;N(§,/\P,)\5,)\I) — Lg(ﬁ,)\P,/\g,/\I)’ < e
On the other hand, for each fixed { € Cg, the function
Le(6, AP X, 0\T) is linear and thus continuous in
(AP A 0T and domLg(€,-,-,-) = R x RIEl x RIZI has
non-empty interior. It follows from analogous arguments that
Sup(Ap,/\g,)\I)GCA |L9;N(£7 )‘Pa )\5’ )‘I) - La(é-? AP) )‘Ev AI)| <
€. Combining these results implies that for any ¢ > 0 and a.e.
wsaa € Qgaa there is a N*(e,wsaa) such that

sup ‘LQ;N(g?APa)‘gy/\I) - L9(€7)‘paA87AI)’ S €.
(£,AT A8 A T)eC

(22)

Now, assume by contradiction that for some

P oynE 4T
N > N*(e,wsaa) we have Lo, N (&5 s Agins Agins Apiv) —

Ly(&;, )\;’P, /\Z’g, )\Z’I) > €. Then by definition of the saddle
points
* *, P *,E *, T * *,P *,E *, 7
LG%N(gG;N”\G 7)‘9 7)‘9 ) ELQ;N(ge;Nv)\&;Na)‘Q;Na AQ;N)
>Lo(5. 057 A A T) + e
>Lo (& A7 25 A e

contradicting (22).

Similarl%, assuming by contradiction that
, € L P £ Z
L9(§;7)\; 7/\2 ’)\; ) - Le;N(gg;N’)‘;;N7A;;N7/\;;N) > €
gives

P oy6E L P oy6E 6T
L9(£;7)\Z;N’)\Z;N7>\;;N) ZL9(£;7)‘Z 7)\; 7)\; )
P € L
>L9;N(€;;N7 )‘;;Na A;;Na )‘Z;N) +e
PoyxE L
ZL9§N(€;’ A;;N’ )\;;N’ A;,N) + €

also contradicting (22).
It follows that

P € I P € I
LG;N(&;;N;)‘Z;'N»)‘;;N7>‘;;N)7L9(£;a)‘z 7>\; v>\; ) SE

for all N > N*(¢,wsa4), and therefore

: P € Iy P € L
]\}E)HOOLQ;N(S;;N7A;;N7A;;N’)‘;;N)_L9(£;’)‘2 7>\; 7>\; )’

(23)
w.p. 1.

Part 2: Let us now show that D{Sy,S} — 0. We
argue by a contradiction. Suppose that D {Sy, S} - 0. Since
C is comgact, we can assume that there exists a sequence
(fg;N,)\Z;N,)\Z;JSV,)\;;ﬁ) € Sy that converges to a point
(5*’5\*,P’5\*,5’5\*,I) c C and (E*’S\*,PJ 5\*,575\*,1) g S
However, from (21) we must have that £* € P. Therefore,
we must have that

Lo(E5, NP A9 XNT) > Lo(E5, 057 0% 005,

by definition of the saddle point set.
Now,

P € I Y&, P yx,E y*,T
LG;N(&Z‘;;N&AZ;NvA;;NvA;;N)fLQ(S*;A* P7>‘* 7>‘* )
P € L P E Z
= I:LO;N(gg;N7 )‘;;Na )‘Z;Na AZyN) —Ly (f;;N? AZ;N7 )‘;;Na )‘;N):|

Lol MR Ao Aok ) — Lo(&, X0 X, AT
(24)

The first term in the r.h.s. of (24) tends to zero, using the argu-
ment from (22), and the second by continuity of Ly guaranteed
by (ii). We thus obtain that Lo,y (&5, Apix - A > Mg tends
to Lo(&, AP A€ XT) > Lo(ex, AT A€ Ae?), which
is a contradiction to (23).

Part 3: We now show the consistency of Vg.np(Z).
Consider Eq. (9). Since Vg log P(-) is bounded by Assumption
IV.1, and Vi f;(; Pp) and Vyg(-; Py) are bounded by As-
sumption II.2, and using our previous result D {Sy,S} — 0,
we have that for a.e. wgaa € Qsa4a

lim Vonp(Z) =Y Po(w)&(w)Velog Pa(w)(Z(w) — A\y'")
N—00 oen
=3 A () Vage (€55 Po)
ec&
=S AV fi(&: P)
i€T
= Vyp(Z).
where the first equality is obtained from the envelope
theorem (see Theorem IV.2) with (&5, \5" A& A57) €
Sy NS the limit lpoint of the converging sequence

P £ )
{(gg;Nv AZ;N) )‘Z;Nv )‘;;N)}NGN~

D. Convergence Analysis of Empirical PRSVI

Lemma A.2 (Technical Lemma). Let P(-|-,-) and P(:|-,")
be two arbitrary transition probability matrices induced by
policy p(-|-). At state x € X, for any £ : (o Poyu €
U(x, P(|z,-)pu(-|x)), there exists a Mg > 0 such that for
some & : £o Pop e Ulx, Plla, )u(-|r)),

Y. léaa’) = &(a,a’)|p(alz)

' e€X,ac A

<M; Z

r’'€X,ac A

’P(x'|x,a) — P(z'|z,a)| p(ala).
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Proof. From Theorem II.1, we know that U (z, P(-|z, ) u(:|x))
is a closed, bounded, convex set of probability distribu-
tion functions. Since any conditional probability mass func-
tion P is in the interior of dom(X{) and the graph of
U(z, P(-|x,)p(-]x)) is closed, by Theorem 2.7 in [51],
U(z, P(-|x,)p(-]x)) is a Lipschitz set-valued mapping with
respect to the Hausdorff distance. Thus, for any £ : £oPopu €
U(z, P(-|z, - )u(-|z)), the following expression holds for some
M{ > 0:

o inf
§:goPopcU(z, P(|z,)u(:|2) 1 e qen

Z ’P(x/ ]S(x’|x,a)’ u(alx).

' e€X,ac A

<M |z, a) —

Next, we want to show that the infimum of the left side
is attained. Since the objective function is convex, and
U(z, P( |z)pu(-|z)) is a convex compact set, there exists
£ : & oPop e U(x,P(|z)u(|z)) such that infimum is
attained. O]

Lemma A.3 (Strong Law of Large Number). Consider the
sampling based PRSVI algorithm with update sequence {Uy}.
Then as both N and k tend to oo, Uy, converges with proba-
bility 1 to vy, the unique solution of projected risk sensitive
fixed point equation 11T, [Dv] = Pv.

Proof. By the strong law of large number of Markov process,
the empirical visiting distribution and transition probability
asymptotically converges to their statistical limits with proba-
bility 1, i.e., for any z,2’ € X and a € A,

N_Bl 1{z; =z}

N — dg(x|m0), and P(2'|z,a) — P(a'|z,a).
Therefore with probability 1,
1 Nl
N ¢(xt)¢(xt)T - de)(ﬂxo) ’ ¢(x)¢—r(x)~
t=0 T

Now we show that following expression holds with proba-
bility 1:

i
max §(a, ") Po;n (
oP, o ceU(x, P, o
§:€0Py, NopgEU(xt, QNM)/GXaeA

)+ 5w '|ov, a))?
S élas) P |xt,a>{c<xt,a>+w% ()}

— max
§:8oPopgeU(wy,Popg)<
z/,a
(25)

l|xt7a)'

{C(a:t, + v (;5 (a,2")Po.n(z

Notice that for

max

/
(a x )}aeA,x’EX € arg
' &:60Pp,NopgEU(xt, Py NOpg)

{fg,xt;N
Z &(a, 2" ) Py.n (2

z'e€X,ac A

|y, a)po(alz) {C(zr, a)+yv ¢ ()},

Lemma A.2 implies

max Zax’P. 2 |xe, a alzs)-
5:goPG;NOMeu(the;Now)m/ af( ,7') a,N( |z¢, a)po( \ t)

(&(a, ") Py, (2|24, a))?
Z §(a,x/)P($’|xt,a),ug(a|xt)-

' €X,ac A

{Clar,a) + w7 o (2)}

{C(:Eta ) + 70T¢

— max
§:§oPopg€U(xt,Popg)

}+

|g(a,x’)—£(a,x/)|u(a|x)<{Cmax+7||<1>vlloo}(Mg;,zﬁNﬂLwemax 1€0,2.:v (@ ))

1
Po.n (2|24, )| plaly) + N

/lml‘wa) -

by

' €X,acA

|P9($

The quantity max;ecx acal&j ,,.v(a, )| is bounded because
U (e, Po.n (|, )p(-|ze)) is a closed and bounded convex set
from the definition of coherent risk measures. By repeating the
above analysis by interchanging Py and Py, and combining
previous arguments, one obtains

max

E f a, l‘ PgN
§:60Py, NopgEU(xt, Py, NOHG)

}+2N (§(a, ") Py (2’1, 0))?

|$t7 a)pe(alze)-

e, a)po(ale)

{Clona) +mTo(s
max

> éf0s)
5 goPoug €U (zt, Poue)
{C(mz,a) +707 ¢ () }’ SoNv T {Cmax + V(| Pv[[oc } -

max{ <M5*+max|.£*(a,:r)|) <M§9 —|—max|§g oV (@ x)\)}
Zpg (a]zt) ‘P

Therefore, the claim in expression (25) holds when N — oo
and .0y oe foaley) [Po(a e, @) — Poy (2|, )| —
0. On the other hand, the strong law of large numbers also
implies that with probability 1, for xy = z,

N—1

Z O(z¢) p(Pve) — do(z|m0)d(T)

& g0 Popgcti(a Bz, 1

— Py.n(2' |:Et,a)’ .

e, a)

1

N o(la))
Z §(a.a")P(a' |, ) (al2) { C(w,a) + 705 6 () }

' e€X,ac A

As N — oo, the above arguments imply that vy — v — 0. On
the other hand, Proposition 1 in [20] implies that the projected
risk sensitive Bellman operator IITy[V] is a contraction, it
follows that from the analysis in Section 6.3 in [13] that
the sequence {®v;} generated by projected value iteration
converges to the unique fixed point ®vy. This in turns implies
that the sequence {®vy} converges to Dv}. O

E. Proof of Theorem V.4

Similar to the proof of Theorem IV.2, recall the saddle point
definition of (&5 ., Ay PAE A I) € S and strong duality

Gz’ 0,2

result, i.e.,
ma Az e (1) [Colx, -) + YV
e P i () EEPCloma 1) [CO (@) Vo)
= Lo (6 AP A8 NT
I?gs(w,,l\lzlgloxﬁ 0.2(6 A7, X%, A%)

- Lo (&, NP 060\
m B e B FolE .
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the gradient formula in (18) can be written as

max

Eep(ie.. 1) [C . Vol =
caiex Bepcp, Yo (1) [Co (T, ) + Vo]

VoVe(x)=Vo {

'yZpg (alz){&,+(a,a")P(a'|2,a) Ve Va (") + Vo log pe(alz)he(z,a) }

where the stage-wise cost function hg (z,a) is defined in (13).
By defining hy(z,a) = Vglog g (a|z)hg(z, a) and unfolding
the recursion, the above expression implies

VoVo(zo) = Y ho(xo,a0) +7 Y Po(x1|zo,a0)€5 (a0, 1)

ap€A T1EX

> ho(zr,a1)+7 > Polwalzr,a1)8)(ar, 22) Ve Ve (2) |-

a1 €A ToEX

Now since VgV} is continuously differentiable with bounded
derivatives, when ¢ — oo, one obtains v*VyVy(z) — 0 for
any x € X. Therefore, by Bounded Convergence Theorem,
limy_s 00 p(7*Vi(2;)) = 0, when zo = = the above expression
implies the result of this theorem.

FE. Technical Results in Section V-C

Since by convention &5, n(a,z’) = 0 whenever
Py.n(2'|z,a) = 0. In this section, we simplify the analysis
by letting Py, (z'|z,a) > 0 for any ' € X without
loss of generality. Consider the following empirical robust
optimization problem:

Z He(a‘m)Pg;N(I/|z,a)§(a, ZZ?/)

' eX,ac A
{C(x,a) +9Vp(2")}, (26)

where the solution of the above empirical problem
is &, and the corresponding KKT multipliers are

max
§eU(z,Po;n (-], ) o (-|7))

Nl ns A% v AL ). Comparing to the optimization prob-
lem for pn(C(z,-) + yPv), ie.,

pn(C(z,-) +yPv)

1 ! / 2
= max —(&(a,z ) Po.n(x |z, a
sewz,Pe;N(wz,ow(~\z>>z,€;16A2N(5( JPox (@], a))
! / T !
+ o(al) Poux 2/, 0)¢(a, 2') { (2, @) + 99T ()0},
(27)

where the solution of the above empirical problem
is &, and the corresponding KKT multipliers are
5P A E AT ), the optimization problem in (26) can
be viewed as having a skewed objective function of the
problem in (27), within the deviation of magnitude A+1/2N
where A = || ®v; — Vp|loo. Before getting into the main
analysis, we have the following observations.

@) Without loss of generality, we can also assume
(& ains N0 s Ao Aprty)) follows  the  strict
complementary slackness condition®.

Recall from Assumption II.2 that the functions
fi(&,p) and g (&, p) are twice differentiable in & at

p = Py n(-|z) for any z € X.

(i)

9The existence of strict complementary slackness solution follows from
the KKT theorem and one can easily construct a strictly complementary pair
using i.e. the Balinski-Tucker tableau with the linearized objective function
and constraints, in finite time.

(i)  The Slater’s condition in Assumption I1.2 implies the
linear independence constraint qualification (LICQ).
(iv)  Since optimization problem (27) has a convex ob-

jective function and convex/affine constraints in £ €
RIXIXIAl - equipped with the Slater’s condition we
have that the first order KKT condition holds at
&9 oy With the corresponding KKT multipliers are

P s A S s ALy ). Furthermore, define the La-
grangian function

EO;N(ga AP? )‘67 )‘I)

3

z’'eX,ac A

[C(.a) 1767 (@'} +

by

' €X,acA

= " X(e) fel& Pon (|, ) 0 po(-]))

ec&

- Z )‘I(i)fi(gv PG;N("‘(I;? o NG(‘m))

i€l

po(alx) Po.n (2|, a)é(a, 2')-

Po.n (2|7, a)€(a, "))
2N

- AP Mg(a|$)£(a,J)/)PQ;N(I/‘I‘,G)—l

One can easily conclude that

_ Pyn(|z,) " Pon(l|z,)
N

- Z M) VEfil& Pon (-], -) o po(-|x))

i€l

V2E9;N(£7 )‘Pv )‘gv >‘Z) =

such that for any vector v # 0,
Tw27 P #,E T
vV L9§N(§;,I;N? )‘97z;N?)\07z;N7)\077;;N)V < O’

which
order

second
holds at

that  the
(SOSC)

further
sufficient

implies
condition

(f;,z;N’ A;:z;N’ )\Zﬁ;N’ )\Z:Z,N)
Based on all the above analysis, we have the following
sensitivity result from Corollary 3.2.4 in [52], derived based
on Implicit Function Theorem.

Proposition A.4 (Basic Sensitivity Theorem). Under the
Assumption 11.2, for any x € X there exists a bounded non-
singular matrix K¢, and a bounded vector Lg ,, such that
the difference between the optimizers and KKT multipliers of
optimization problem (26) and (27) are bounded as follows:

gg,x'N gg,tN

5\*,1’ )\*’f 1 1
0,z;:N 6,x; N —1

B | =P | +Py Ve (A + )+o (A + ) .

C0.5N 0.;N ¢ 2N 2N

AQ:w;N )\SZz;N

On the other hand, we know from Proposition IV.4
that gg,z;N - gg,x and ()‘;:;D,N7 )\;i,N’ /\;Zf,N) -
()\Z:f,/\;i,/\;:f) with probability 1 as N — oo. Also recall
from the law of large numbers that the sampled approximation
error maXgex qed |P(-|x,a) — Py (|xz,a)|l1 — O almost
surely as N — oo. Then we have the following error bound in
the stage-wise cost approximation hg,n(z,a) and y—visiting
distribution 7y (z, a).

Lemma A.5. There exists a constant My > 0 such that
maXyex acA |ho(x,a) — imy_o0 ho,n (2, a)| < MpA.
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Proof. First we can easily see that for any state x € X and
action a € A,

(ho:n (, a) hg(x a)| <
*, 7
HmN )‘M( )’
€L
*S *,P *,P
+MZ‘)‘(9¢N Gx(e)‘—’_ NowN ~ Al

+ VII‘/allooHﬁe,x;N — ol +71Ve — Puglleo
+ Vo loo max{[|€p ;v lloos IIE;‘@HOO}IIP(-Ix,a)—PN(~|x,a)H1

Note that at N — oo, ||P(-|z,a) — Pn(-|z,a)|s — 0 with
probability 1. Both [|£5 vl and €5 [l are finite valued
because U (Pyp) and U(Py,n) are convex compact sets of real
vectors. Therefore, by noting that ||V ||co < Cmax/(1—) and
applying Proposition IV.4 and A.4, the proof of this Lemma
is completed by letting N — oo and defining

=max {1 M, ’chax } .
I—x
gg,z;N 59 zllN g;,z;N g;,z
AN — Nomn " f‘;iN Ny LA
)‘;’gzv - /\;g}v %ggzv - )‘;:;; K
)\;,1;1\1 A;,IE;N )\;:z,N - AZ:(E 1
max{l7 M, chmax HI®,, Z\IIQ 2|+ fy> A.

O

Lemma A.6. There exists a constant M, > 0 such that |7 —
Imy o Tl < MA.

Proof. First, recall that the y—visiting distribution satisfies the
following identity:

v Z de(z'|z) Z P(z|z,a)é(a, ") pe(alx)
z’'€X acA (28)
=do(z) — (1 = 7){zo =z},

By defining Fj(2/|z) = 3 ,ca Pz, a)é(a, 2" o (ale),
from here one easily notice this expression can be rewritten
as follows:

.
(1 - 7P§> do(|z) = 1{zo = 2}, Yz € X.

On the other hand, by repeating the analysis with Py.n (-|z, )0
1o (+|x) and defining

PegN / ZPON \x,a)f(a,x’)ug(au),
acA
-
we can also write (I —7P§_N) do.ny = {1{zo = 2} }ex-

Combining the above expressions implies for any = € X,

da—de;N—V((ng) do — ( eN)Td9N> =0,
which further implies
(-’ _’Ypeg)T (do — do;n) = (ng - PQE;N)TdG;N
= (do — do;n) = (1 - 7P§)7 y (Pg - Pg‘;N)T dosn .
Notice that with transition probability matrix ng (-|x), we have

k
(I-— 'yPg)’ =30 ('yPg) < o0. The series is summable

because by Perron-Frobenius theorem, the maximum eigen-
value of P is less than or equal toland I— A/Pg is 1nvert1ble
On the other hand, for every given xg € X, and any 2’ € X,

{(Pg P N) dg;N}(Z’)

=3 30" =By (o = alro) (P10 = Pin (&'l
H(1 =) (P (o) = P (') |>

<Eps | (Zv’“u — ) |PE (' x) = Pl (/)| |xo> = Q).

Note that every element in matrix (I — ng)_
k
>ido ('yP(f) is non-negative. This implies for any z € X,

’

{do — doun} (2)] = ‘ { (1 - fypg) - (pg _ PHE;N) ng;N}(z)

<{{(r=vr5) v} | = {(1-+75) Tre} .

The last equality is due to the fact that every element in
vector Q is non-negative. Combining the above results with
Proposition IV.4 and A.4, and noting that (I — yP5) e =

k
Yo ('yP(f) e = 125 ¢, we further have that

7o — mo;nll1 < l[do — do;n |1

T (I o A

1—’}/e o
<y max | P Cle) — P Clo)|,
Y
<1 P(lz. - .
< (165,000 = G oo ()Pl o) o

o+ max{ 165 i 1o 5.2 loc HI P2 @) = Pav (-, a) o).

As in previous arguments, when N — oo, one obtains
IP(:|x,a) — Pn(:|z,a)|[1 — O with probability 1 and
||£;,:E(" )= €$,E;N(w J|l1 — 0. We thus set the constant M
as 7||®; 5 Vo[l /(1= ). O
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