
HIERARCHICAL REINFORCEMENT LEARNING IN
CONTINUOUS STATE AND MULTI-AGENT ENVIRONMENTS

A Dissertation Outline Presented

by

MOHAMMAD GHAVAMZADEH

Approved as to style and content by:

Sridhar Mahadevan, Chair

Andrew G. Barto, Member

Victor R. Lesser, Member

Weibo Gong, Member

W. Bruce Croft, Department Chair
Department of Computer Science

HIERARCHICAL REINFORCEMENT LEARNING IN
CONTINUOUS STATE AND MULTI-AGENT ENVIRONMENTS

A Dissertation Outline Presented

by

MOHAMMAD GHAVAMZADEH

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

January 13

Department of Computer Science

ABSTRACT

This dissertation investigates the use of hierarchy and abstraction as a means of solving

complex sequential decision making problems such as those with continuous state and/or

continuous action spaces, and domains with multiple cooperative agents. In this thesis, we

develop several novel extensions to hierarchical reinforcement learning (HRL) framework

and design algorithms that are appropriate for such problems.

Policy gradient-based reinforcement learning (PGRL) methods have received recent

attention and have several advantages over the more traditional value function based RL

algorithms in solving problems with continuous state spaces. However, they suffer from

slow convergence. In this thesis, we define a family of hierarchical policy gradient RL

(HPGRL) algorithms for scaling PGRL methods to high-dimensional domains. In HPGRL,

each subtask is defined as a PGRL problem whose solution involves computing a locally

optimal policy. Subtasks are formulated in terms of a parameterized family of policies,

a performance function, a method to estimate the gradient of the performance function,

and a routine to update the policy parameters using this gradient. We then accelerate the

learning of HPGRL algorithms by formulating high-level subtasks, which usually involve

smaller state and finite action spaces as value function-based RL problems, and lower-level

subtasks with infinite state and/or action spaces as PGRL problems. We call this family of

algorithms hierarchical hybrid algorithms. The effectiveness of the proposed algorithms

is demonstrated using a simple taxi-fuel problem as well as a more complex continuous

state and action ship steering domain.

When the overall task is continuing, the average reward optimality framework is more

appropriate than the more commonly used discounted framework. We investigate a formu-

lation of HRL based on the average reward semi Markov decision process (SMDP) model,

ii

both for discrete-time and continuous-time. This formulation corresponds to the notion of

hierarchical optimality that have been previously explored in HRL. We present algorithms

that learn to find hierarchically optimal policies under discrete-time and continuous-time

average reward SMDP models. We call them hierarchically optimal average reward RL

(HO-AR) algorithms. We use two automated guided vehicle (AGV) scheduling problems

as experimental testbeds to study the empirical performance of the proposed algorithms.

We also examine the use of HRL to accelerate policy learning in cooperative multi-

agent tasks. The use of hierarchy speeds up learning in multi-agent domains by making it

possible to learn coordination skills at the level of subtasks instead of primitive actions.

Subtask-level coordination allows for increased cooperation skills as agents do not get

confused by low-level details. We develop a hierarchical multi-agent RL framework and

present an algorithm called Cooperative HRL to efficiently solve cooperative multi-agent

problems. We empirically evaluate this algorithm using a large four-agent AGV scheduling

domain. We then extend the framework and algorithm to include communication decisions.

The goal is for agents to learn both action and communication policies that together opti-

mize the task given the communication cost. We propose COM-Cooperative HRL, a

hierarchical multi-agent RL algorithm with communication decisions. We demonstrate its

efficacy as well as the relation between communication cost and the learned communication

policy using a multi-agent taxi problem.

Together, the methods and algorithms developed in this dissertation use prior knowl-

edge in a principled way, and extend the existing HRL frameworks and algorithms to be

more appropriate for solving complex sequential decision making problems such as those

with continuous state and/or action spaces and domains with multiple cooperative agents.

iii

CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 2
1.2 Our Approach . 6
1.3 Contributions . 8
1.4 Outline . 10

2. BACKGROUND AND NOTATION . 13

2.1 Reinforcement Learning . 13
2.2 Markov Decision Processes . 14

2.2.1 Undiscounted Reward Markov Decision Processes 15
2.2.2 Discounted Reward Markov Decision Processes 16
2.2.3 Average Reward Markov Decision Processes . 18
2.2.4 Solution Methods for MDPs . 20

2.2.4.1 Value Function Based Solution Methods for MDPs 21
2.2.4.2 Policy Search Based Solution Methods for MDPs 24

2.3 Semi-Markov Decision Processes . 26

2.3.1 Discounted Reward Semi-Markov Decision Processes 27
2.3.2 Average Reward Semi-Markov Decision Processes 28
2.3.3 Solution Methods for SMDPs . 29

2.4 Hierarchy and Temporal Abstraction . 30

2.4.1 Temporal Abstraction in Classical AI . 30

iv

2.4.2 Temporal Abstraction in Control . 31
2.4.3 Temporal Abstraction in Reinforcement Learning 32

2.5 Multi-Agent Reinforcement Learning . 36

3. A FRAMEWORK FOR HIERARCHICAL REINFORCEMENT
LEARNING . 40

3.1 Motivating Example . 40
3.2 Policy Execution . 43
3.3 Local versus Global Optimality . 44
3.4 Value Function Definitions . 45
3.5 Value Function Decomposition . 47

4. HIERARCHICAL AVERAGE REWARD REINFORCEMENT
LEARNING . 52

4.1 Formulation . 53
4.2 Hierarchically Optimal Average Reward RL Algorithm 55
4.3 Experimental Results . 60

4.3.1 A Small AGV Scheduling Problem . 60
4.3.2 AGV Scheduling Problem (Discrete and Continuous Time

Models) . 63

4.4 Conclusions and Future Work . 68

5. HIERARCHICAL POLICY GRADIENT REINFORCEMENT
LEARNING . 69

5.1 Policy Gradient Formulation . 70

5.1.1 Policy Formulation . 70
5.1.2 Performance Measure Definition and Optimization 73

5.2 Hierarchical Policy Gradient Algorithms . 76

5.2.1 Taxi-Fuel Problem . 77

5.3 Hierarchical Hybrid Algorithms . 79
5.4 Conclusions and Future Work . 89

6. HIERARCHICAL MULTI-AGENT REINFORCEMENT LEARNING 90

6.1 Multi-Agent SMDP Model . 92
6.2 A Hierarchical Multi-Agent Reinforcement Learning Framework 95

v

6.3 A Hierarchical Multi-Agent Reinforcement Learning Algorithm 99
6.4 Experimental Results for the Cooperative HRL Algorithm 101
6.5 Incorporating Communication Decisions in the Framework 108

6.5.1 Communication Among Agents . 108
6.5.2 A Hierarchical Multi-Agent RL Algorithm with Communication

Decisions . 109

6.6 Experimental Results for the COM-Cooperative HRL Algorithm 113
6.7 Conclusions and Future Work . 119

7. SCHEDULE FOR COMPLETION OF THE DISSERTATION 123

7.1 Schedule . 124

APPENDIX: INDEX OF SYMBOLS . 126

BIBLIOGRAPHY . 128

vi

LIST OF TABLES

Table Page

4.1 Parameters of the Discrete-Time Model . 65

4.2 Parameters of the Continuous-Time Model . 65

5.1 Range of state and action variables for the ship steering task. 81

6.1 Model parameters for the multi-agent AGV scheduling task. 104

vii

LIST OF FIGURES

Figure Page

1.1 An AGV scheduling domain with four machines M1 to M4. AGVs are
responsible to carry raw materials and finished parts between the
machines and the warehouse. 4

1.2 A hierarchical task decomposition for the AGV scheduling problem. 5

2.1 An MDP on which discounted and undiscounted measures may
disagree. 18

3.1 A robot trash collection task and its associated task graph. 42

3.2 This figure shows the two-part decomposition for V̂ (i, s), the projected
value function of subtask i for the shaded state s. Each circle is a state
of the SMDP visited by the agent. Subtask i is initiated at state sI and
is terminated at state sT . The projected value function V̂ (i, s) is
broken into two parts: Part 1) the projected value function of subtask
a for state s, and Part 2) the completion function, the expected
discounted cumulative reward of completing subtask i after executing
action a in state s. 50

3.3 This figure shows the three-part decomposition for V (i, x), the
hierarchical value function of subtask i for the shaded state x = (ω, s).
Each circle is a state of the SMDP visited by the agent. Subtask i is
initiated at state xI and is terminated at state xT . The hierarchical
value function V (i, x) is broken into three parts: Part 1) the projected
value function of subtask a for state s, Part 2) the completion
function, the expected discounted cumulative reward of completing
subtask i after executing action a in state s, and Part 3) the sum of all
rewards after termination of subtask i. 51

4.1 A small AGV scheduling task and its associated task graph. 62

4.2 This plot shows that HO-DR and HO-AR algorithms (the two curves at the
top) learn the hierarchically optimal policy while MAXQ-Q and
HH-Learning (the two curves at the bottom) only find the recursively
optimal policy for the small AGV scheduling task. 62

viii

4.3 An AGV scheduling task. An AGV agent (not shown) carries raw
materials and finished parts between machines and warehouse. 64

4.4 Task graph for the AGV scheduling task. 64

4.5 This plot shows that the discrete-time HO-AR algorithm performs better
than the discounted reward HO-DR algorithm on the AGV scheduling
task. It also demonstrates the faster convergence of the HO-AR
algorithm comparing to RVI Q-learning, the non-hierarchical average
reward algorithm. 66

4.6 This plot shows that the continuous-time HO-AR converges to the same
performance as the discounted reward HO-DR on the AGV scheduling
task. It also demonstrates the faster convergence of the HO-AR
algorithm comparing to RVI Q-learning, the flat average reward
algorithm. 67

5.1 This figure shows how we model a subtask as an episodic problem under
Assumption 5.2. 72

5.2 The taxi-fuel problem. 78

5.3 This figure compares the performance of the HPGRL algorithm proposed
in this section with MAXQ-Q and flat Q-learning algorithms on the
taxi-fuel problem. 79

5.4 The ship steering task. 80

5.5 This figure shows two simplified versions of the ship steering task used as
low-level subtasks in the hierarchical decomposition of the ship
steering problem. 82

5.6 A task graph for the ship steering problem. 82

5.7 This figure shows the performance of hierarchical hybrid, flat PGRL and
actor-critic algorithms in terms of the number of successful trials in
1000 episodes. 85

5.8 This figure shows the performance of the hierarchical hybrid algorithm in
terms of the number of low-level subtask calls. 86

5.9 This figure shows the performance of hierarchical hybrid, flat PGRL and
actor-critic algorithms in terms of the number of steps to pass through
the gate. 87

ix

5.10 This figure shows the performance of the diagonal subtask in terms of the
number of successful trials in 1000 episodes. 87

5.11 This figure shows the performance of the horizontal/vertical subtask in
terms of the number of successful trials in 1000 episodes. 88

5.12 This figure shows the learned policy for two initial configurations of the
ship. 88

6.1 A multi-agent trash collection task and its associated task graph. 92

6.2 A multi-agent AGV scheduling domain. There are four AGVs (not shown)
which carry raw materials and finished parts between machines and
the warehouse. 102

6.3 Task graph for the AGV scheduling task. 103

6.4 This figure shows that the Cooperative HRL algorithm outperforms both
the selfish multi-agent HRL and the single-agent HRL algorithms
when the AGV travel time and load/unload time are very much less
compared to the average assembly time. 105

6.5 This figure compares the Cooperative HRL algorithm with the selfish
multi-agent HRL, when the AGV travel time and load/unload time are

1
10th of the average assembly time. 105

6.6 A flat Q-Learner learns the AGV domain extremely slowly showing the
need for using a hierarchical task structure. 106

6.7 This plot shows that the Cooperative HRL algorithm outperforms three
well-known widely used industrial heuristics for AGV
scheduling. 106

6.8 This plot compares the performance of the Cooperative HRL algorithm
with cooperation at the top level of the hierarchy vs. cooperation at the
top and third levels of the hierarchy. 107

6.9 Task graph of the trash collection problem with communication
actions. 111

6.10 A multi-agent taxi domain and its associated task graph. 114

6.11 This figure shows that the Cooperative HRL and the COM-Cooperative
HRL with ComCost = 0 have better throughput than the selfish
multi-agent HRL and the single-agent HRL. 115

x

6.12 This figure shows that the average waiting time per passenger in the
Cooperative HRL and the COM-Cooperative HRL with ComCost = 0
is less than the selfish multi-agent HRL and the single-agent
HRL. 116

6.13 This figure compares the average waiting time per passenger for the selfish
multi-agent HRL and the COM-Cooperative HRL with ComCost = 0
for three different passenger arrival rates (5, 10 and 20). It shows that
coordination among taxis becomes more crucial as the passenger
arrival rate becomes smaller. 117

6.14 This figure shows that as communication cost increases, the throughput
(top) and the average waiting time per passenger (bottom) of the
COM-Cooperative HRL become closer to the selfish multi-agent HRL.
It indicates that agents learn to be selfish when communication is
expensive. 118

xi

CHAPTER 1

INTRODUCTION

Sequential decision making under uncertainty is one of the fundamental problems in Ar-

tificial Intelligence (AI). Most of the sequential decision making problems can be modeled

using the Markov decision process (MDP) formalism. An MDP (Howard, 1960; Puterman,

1994) models a system that we are interested in controlling as being in some state at each

time step. As a result of actions the agent selects, the system moves through some sequence

of states and receives a sequence of rewards. The goal is to select actions to maximize some

measure of long-term reward.

Reinforcement learning (RL) gives a set of tools for solving problems posed in the MDP

formalism. Despite its numerous successes in a number of different domains, including

learning to play backgammon (Tesauro, 1994), and elevator scheduling (Crites and Barto,

1998), current RL methods do not scale well to high dimensional domains — they can

be slow to converge and require too many training samples to be practical for many real-

world problems. This issue is known as the curse of dimensionality: the exponential

growth of the number of parameters to be learned with the size of any compact encoding

of system state (Bellman, 1957). Recent attempts to combat the curse of dimensionality

have turned to principled ways of exploiting abstraction in RL. This leads naturally to

hierarchical control architectures and associated learning algorithms.

Although hierarchical reinforcement learning (HRL) approaches exploit the power of

abstraction and scale better than flat RL methods to high dimensional domains, they still

suffer from the main limitation of flat RL algorithms, curse of dimensionality.

1

The objective of this dissertation is to develop several novel extensions to existing HRL

frameworks and design algorithms that are appropriate for solving complex sequential deci-

sion making problems such as those with continuous state and/or action spaces and domains

with multiple cooperative agents.

1.1 Motivation

Sequential decision making in uncertain dynamic environments arise in many real-

world systems. For example, the efficiency of a complex manufacturing system, e.g.,

a system for manufacturing automobile or personal computers, involves optimizing hun-

dreds or even thousands of processes (sub-systems) such as inventory, engineering design,

assembly, and marketing.

These problems involve decision makers, or agents, selecting a sequence of actions in

order to achieve multiple long-term goals. Moreover, uncertainty is omnipresent in these

domains, both in the effects of an action, and in the evolution of the actual system. The

uncertain and ever changing nature of these problems makes it difficult to plan ahead of

time. Hence, these tasks require dynamic control rules, which are dependent on the state

variables of the system. In recent years, advances in technology have led to increased

interest in automated methods for solving these tasks. Commercial tools are now available

for problems ranging from factory optimization to medical diagnosis. Unfortunately, these

problems tend to be very complex, and most of the existing automated techniques either

build on heuristics, or do not fully address the long-term or the uncertain aspects of these

sequential decision making tasks.

Fortunately, although such problems are very complex, they are usually hierarchically

decomposable into a set of simpler subtasks. As argued by Simon (1981) in “Architecture

of Complexity”, many complex systems have a nearly decomposable hierarchical structure,

with the subsystems interacting only weakly between themselves. Humans exploit this

decomposable hierarchical structure to solve such complex and large-scale problems.

2

An example will help illustrating the basic concepts. This example has been chosen

because first, it is an interesting and challenging manufacturing system, and second, several

versions of this example have been used in the experiments of this dissertation. Figure

1.1 demonstrate an automated guided vehicle (AGV) scheduling task. AGVs are used

in flexible manufacturing systems (FMSs) for material handling (Askin and Standridge,

1993). They are typically used to pick up parts from one location, and drop them off at

another location for further processing. Locations correspond to workstations (M1 to M4)

or storage locations (load and unload stations). Loads that are released at the drop-off points

of workstations (D1 to D4) wait at their pick-up points (P1 to P4) after the processing is

over, so the AGV is able to take them to the warehouse or some other locations. The pick-up

points (P1 to P4) are the machine or workstations’ output buffers. Any FMS using AGVs

faces the problem of optimally scheduling the paths of the AGVs in the system (Klein and

Kim, 1996). For example, a move request occurs when a part finishes at a workstation.

If more than one vehicle is empty, the vehicle which would service this request needs

to be selected. Also, when a vehicle becomes available, and multiple move requests are

queued, a decision needs to be made as to which request should be serviced by that vehicle.

These schedules obey a set of constraints that reflect the temporal relationships between

activities and the capacity limitations of a set of shared resources. The system performance

is generally measured in terms of throughput, on-line inventory, AGV travel time, and flow

time, but throughput is by far the most important factor. Throughput is measured in terms

of the number of finished assemblies deposited at the unloading deck per unit time. Since

this problem is very complex, various heuristics and their combinations are generally used

to schedule AGVs (Klein and Kim, 1996). However, the heuristics perform poorly when

the constraints on the movement of the AGVs are reduced.

In order for AGV to optimize this task, it must learn all sub-systems of the task such

as carry parts from load station to machines, deliver assemblies from machines to unload

station at the warehouse, navigate to load and unload stations, plus it should learn the order

3

Unload

40m20m

40m40m

Parts

Warehouse 60m

P4P3

D2

D3

60m

60m
Load

20m

P1P2

M: Machine
D: Drop off Station
P: Pick up Station

Assemblies

D1

D4

M2 M1

M4M3

Figure 1.1. An AGV scheduling domain with four machines M1 to M4. AGVs are respon-
sible to carry raw materials and finished parts between the machines and the warehouse.

to execute these sub-systems. The state space of this task consists of AGV’s status and

location, status of input and output buffers of workstations, and the availability of parts in

warehouse, which can become enormous. It makes it very difficult for flat RL methods to

be used in this problem as we will show in Chapter 6.

However, the AGV scheduling task described above is naturally decomposed to a set

of non-primitive subtasks like deliver material to workstations (DM1 to DM4), deliver

assembly from workstations to warehouse (DA1 to DA4), navigation to the load station at

the warehouse (NavLoad), navigation to the drop-off points of workstations (NavPut1 to

NavPut4), navigation to the pick-up points of workstations (NavPick1 to NavPick4), navi-

gation to the unload station at the warehouse (NavUnload), and a set of primitive subtasks

such as load, put, pick, unload, left, forward, and right. These are the subtasks that are nat-

urally important in solving the AGV scheduling task. The designer of the system uses her

domain knowledge to put the primitive and non-primitive subtasks of the AGV scheduling

4

problem together and builds a hierarchical task decomposition like the one shown in Figure

1.2. This hierarchical decomposition can later be used by HRL algorithms such as hierar-

chy of abstract machines (HAMs) (Parr, 1998), options (Sutton et al., 1999; Precup, 2000),

MAXQ (Dietterich, 2000), and programmable HAMs (PHAMs) (Andre and Russell, 2001;

Andre, 2003) to optimize the AGV scheduling problem. It leads to faster convergence and

better performance than the flat algorithms as we will show for MAXQ in this thesis.

NavPick iNavPut i

NavPut i : Navigation to Dropoff Station i

: Navigation to Pickup Station iNavPick i

DM i : Deliver Material to Station i

DA : Deliver Assembly from Station i i

NavLoad : Navigation to Loading Deck

NavUnload : Navigation to Unload Deck

Root

DA2DA1

Nav

Forward RightLeft

.

.NavLoad Load Put Pick Unload

DM1 DM2

NavUnload

Figure 1.2. A hierarchical task decomposition for the AGV scheduling problem.

These HRL algorithms find the hierarchical or recursive optimal discounted reward

policy for the AGV scheduling problem when the number of states is finite. However as

we mentioned earlier, even HRL algorithms suffer from the curse of dimensionality. It will

take a long time and require too many samples for them to converge if the state space of

the system grows. It raises several important questions such as: 1) Is the discounted reward

optimality the most suitable optimality criterion for this task? If it is not, is it possible

to design HRL algorithms to find a more appropriate optimal policy for this problem? 2)

Consider the continuous state and action version of the AGV scheduling problem, when the

AGV must learn to navigate using low-level continuous commands instead of directional

actions such as forward or left, and it has continuous sensors instead of only viewing the

5

world as a discrete grid. Are the existing HRL algorithms still able to learn this version

of the problem efficiently? 3) Consider the multi-agent version of the AGV scheduling

problem where there is more than one AGV in the environment cooperating with each

other to carry parts to workstations and bring assemblies from workstations back to the

warehouse. The number of states and actions, and as a result the number of parameters

to be learned increases dramatically with the number of agents (AGVs). Does the nature

of cooperative multi-agent problems allow us to design more efficient HRL algorithms

for these domains? These are the types of the questions that we try to address in this

dissertation. We briefly describe how we address the above questions in the next section,

and leave the more elaborative discussion for the next sections.

1.2 Our Approach

Prior work in HRL including HAMs, options, MAXQ, and PHAMs has been limited to

the discrete-time discounted reward SMDP model. However, the average reward optimality

criterion is generally more appropriate in modeling cyclical control and optimization tasks,

such as queuing, scheduling, and flexible manufacturing. We investigate a formulation of

HRL based on the average reward SMDP model, both for discrete-time and continuous-

time. This formulation corresponds to the notion of hierarchical optimality that have been

previously explored in HRL. We present algorithms that learn to find hierarchically optimal

policies under discrete-time and continuous-time average reward SMDP models. We call

them hierarchically optimal average reward RL (HO-AR) algorithms.

Existing HRL approaches are limited to value function based RL (VFRL) methods.

However, there are only weak theoretical guarantees on the performance of VFRL algo-

rithms on problems with large or continuous state spaces. Policy gradient based RL (PGRL)

methods have demonstrated better performance in problems with continuous state spaces.

We propose a family of hierarchical policy gradient RL (HPGRL) algorithms that ex-

ploit both the power of abstraction, and the efficiency of PGRL methods in continuous state

6

problems. However, they suffer from slow convergence of PGRL algorithms. Consider the

continuous state and action version of the AGV scheduling task again. The low-level sub-

tasks such as NavUnload are now continuous state and action problems. The AGV needs

to know its exact location and selects its action among infinite number of possibilities in

order to solve these low-level continuous state and action subtasks. On the contrary, when

AGV decides at the high-level in the hierarchy, for instance to choose between delivering

material to or from machines, it only needs a rough estimate of its location. Additionally,

the AGV selects its action among only eight possible choices (DM1 to DM4 and DA1

to DA4). We accelerate learning of HPGRL algorithms by formulating high-level sub-

tasks, which usually have smaller state and finite action spaces as VFRL problems, and

lower-level subtasks such as NavUnload with infinite state and/or action spaces as PGRL

problems. We call this family of algorithms hierarchical hybrid algorithms.

Finally, we examine the use of HRL to accelerate policy learning in cooperative multi-

agent tasks. The nature of cooperative multi-agent problems allows for more efficient use of

HRL methods. Consider the multi-agent version of the AGV scheduling task again. In our

approach, AGVs use the same hierarchical task decomposition. Learning is decentralized,

with each agent learning three interrelated skills. First, how to perform subtasks such

as deliver material to machine M1 (DM1) or navigation to unload station (NavUnload).

Second, the order to do the subtasks, for instance go to load station and pick up part 1 before

heading to workstation M1. Third, how to coordinate with each other, AGV 1 can carry

part for workstation M1 while AGV 2 makes the output buffer of M1 empty. The use of

hierarchy allows AGVs to learn more efficiently by making it possible to learn coordination

skills at the level of subtasks instead of primitive actions. Subtask-level coordination allows

for increased cooperation skills as agents do not get confused by low-level details. Each

AGV learns high-level coordination knowledge (e.g., what is the utility of AGV 1 carrying

part to machine M1 if AGV 2 is bringing assembly back from machine M3), rather than

7

it learns its response to low-level primitive actions of the other AGVs (e.g., if AGV 1 goes

forward, what should AGV 2 do).

In addition to curse of dimensionality, multi-agent learning suffers from partial ob-

servability. Even if an agent has complete observability of its own state, states and actions

of other agents are not fully observable. One way to address the partial observability in

distributed multi-agent domains is to use communication to exchange required information.

However, communication is usually costly, which requires agents to optimize their commu-

nication policy in addition to their action policy. A further advantage of the use of temporal

abstraction in cooperative multi-agent learning is that AGVs now communicate at the level

of subtasks (temporally extended actions) instead of primitive actions. Since subtasks can

take a long time to complete, communication is needed only fairly infrequently.

In this research, we build a hierarchical multi-agent RL framework and present two

algorithms called Cooperative HRL and COM-Cooperative HRL. In Cooperative HRL

algorithm, we assume communication is free. In COM-Cooperative HRL algorithm, we

assume communication is costly and agents learn both action and communication policies

that together optimize the task given the communication cost. Of course, it makes COM-

Cooperative HRL algorithm slower than Cooperative HRL due to more parameters that

must be learned.

1.3 Contributions

This dissertation makes the following contributions.

Hierarchical Reinforcement Learning

• We present a general framework for hierarchical reinforcement learning (HRL) for

simultaneous learning of policies at multiple levels of the hierarchy. This framework

is a generalization of existing HRL approaches especially the MAXQ value function

decomposition (Dietterich, 2000). In our framework, we apply three-part value func-

8

tion decomposition (Andre and Russell, 2002) to guarantee hierarchical optimality,

and use reward shaping (Ng et al., 1999) to reduce the burden of exploration, thereby

extending the MAXQ method.

Hierarchical Average Reward Reinforcement Learning

• We extend previous work on hierarchical reinforcement learning (HRL) to the av-

erage reward SMDP framework and present discrete-time and continuous-time hi-

erarchically optimal average reward RL (HO-AR) algorithms. The aim of these

algorithms is to find a hierarchical policy with highest global gain.

• We empirically demonstrate the effectiveness of HO-AR algorithms and the differ-

ence between hierarchical and recursive optimality using two AGV scheduling tasks.

Hierarchical Policy Gradient Reinforcement Learning

• We present a family of hierarchical policy gradient RL (HPGRL) algorithms for

scaling policy gradient based reinforcement learning methods to problems with con-

tinuous (or large discrete) state and/or action spaces.

• We present a family of hierarchical hybrid algorithms to accelerate learning in HP-

GRL algorithms. In hierarchical hybrid algorithms, we formulate high-level sub-

tasks, which usually have smaller state and finite action spaces as value function

based RL problems, and low-level subtasks with infinite state and/or action spaces as

policy gradient based RL problems.

• We empirically demonstrate the performance of hierarchical hybrid algorithms using

a continuous state and action ship steering problem.

Hierarchical Multi-Agent Reinforcement Learning

• We extend the SMDP model to cooperative multi-agent domains and present the

multi-agent SMDP (MSMDP) model.

9

• We present a hierarchical cooperative multi-agent RL framework in which agents

learn coordination faster by sharing information at the level of subtasks, rather than

attempting to learn coordination at the level of primitive actions.

• We employ this hierarchical cooperative multi-agent RL framework and present a

hierarchical multi-agent RL algorithm called Cooperative HRL.

• We empirically demonstrate the effectiveness of the Cooperative HRL algorithm us-

ing a large four-agent AGV scheduling problem.

• We extend the Cooperative HRL algorithm to include communication decisions and

present a hierarchical multi-agent RL algorithm called COM-Cooperative HRL. This

algorithm is designed to learn both action and communication policies that together

optimize the task given the communication cost.

• We empirically demonstrate the effectiveness of the COM-Cooperative HRL algo-

rithm using a multi-agent taxi problem.

1.4 Outline

The remainder of this thesis is organized as follows:

Chapter 2: We present the foundational background material for the dissertation. We

begin by describing the reinforcement learning (RL) problem and formalizing the Markov

decision process (MDP) and semi-Markov decision process (SMDP) frameworks under

different optimality criteria. We also review some of the key ideas and solution methods

of MDPs and SMDPs. We discuss some of the difficulties of solving MDPs for problems

with large state space. Then we briefly review the historical development of hierarchy and

temporal abstraction in artificial intelligence (AI), control theory, and RL. In this, we es-

pecially emphasize hierarchical reinforcement learning (HRL) and the main concepts and

10

algorithms in this framework. Finally, we present a brief overview of the growing field of

multi-agent reinforcement learning. In this chapter, we also introduce the notation that will

be used in this dissertation.

Chapter 3: We presents a general framework for hierarchical reinforcement learning (HRL)

which is used in the algorithms proposed in this dissertation. We also illustrate the basic

concepts of HRL such as policy execution, hierarchical and recursive optimality, and value

function definitions and decompositions in this chapter.

Chapter 4: We present a hierarchically optimal average reward RL (HO-AR) algorithm

for both discrete and continuous time SMDP models. We also use a two AGV tasks to

demonstrate the performance and the type of optimality achieved by HO-AR algorithm.

Chapter 5: We first present a family of hierarchical policy gradient RL (HPGRL) algo-

rithms and compare their performance with hierarchical value function based RL (VFRL)

algorithms in a simple taxi-fuel problem. We then show how learning can be accelerated in

HPGRL algorithms by using both value function and policy gradient based RL formulations

in a hierarchy, and propose the family of hierarchical hybrid algorithms. We empirically

demonstrate the performance of the hierarchical hybrid algorithm using a continuous state

and action ship steering problem.

Chapter 6: We investigate the use of hierarchical reinforcement learning (HRL) to speed

up the acquisition of cooperative multi-agent tasks. We first extend the SMDP model to

cooperative multi-agent domains and present the multi-agent SMDP (MSMDP) model. We

use this model and present a hierarchical cooperative multi-agent RL framework. We then

use this hierarchical cooperative multi-agent RL framework and propose two hierarchi-

cal cooperative multi-agent RL algorithms called Cooperative HRL and COM-Cooperative

11

HRL. While the Cooperative HRL algorithm assumes that communication is free, in the

COM-Cooperative HRL algorithm, agents learn both action and communication policies

that together optimize the task given the communication cost. The effectiveness of the

Cooperative HRL algorithm is empirically demonstrated using a large four-agent AGV

scheduling problem. We also empirically demonstrate the effectiveness of the COM-Cooperative

HRL algorithm as well as the relation between the communication cost and the learned

communication policy using a multi-agent taxi problem.

Chapter 7: We provide a summary of the future plan and a time line for completion of

this dissertation.

Finally, we provide a list of the symbols used in this dissertation in the Appendix.

12

CHAPTER 2

BACKGROUND AND NOTATION

In this chapter, we describe the reinforcement learning (RL) problem and introduce the

Markov decision process (MDP) and semi-Markov decision process (SMDP) formalisms

under different optimality criteria. We also present some of the key ideas and solution

methods of MDPs and SMDPs. Then we review the historical development of hierarchy

and temporal abstraction in artificial intelligence (AI), control theory, and RL. In this, we

especially emphasize hierarchical reinforcement learning (HRL) and the main concepts and

algorithms in this framework. Finally, we present a brief overview of the growing field of

multi-agent reinforcement learning. In doing so, we also introduce the notation that will be

used in the remainder of this dissertation.

Throughout this chapter we present the standard body of background work in the field.

For more comprehensive introduction to MDPs, SMDPs, and RL, readers may also refer

to standard texts such as (Bertsekas, 1995; Bertsekas and Tsitsiklis, 1996; Howard, 1960,

1971; Puterman, 1994; Sutton and Barto, 1998) or the survey by Kaelbling et al. (Kaelbling

et al., 1996). Barto and Mahadevan (2003) provides more detailed introduction to HRL.

2.1 Reinforcement Learning

Reinforcement learning (RL) (Kaelbling et al., 1996; Sutton and Barto, 1998) refers

to a collection of methods that allow an agent (a system) to learn how to make good de-

cisions by observing its own behavior, and improves its actions through a reinforcement

mechanism. There are many formal specifications of this kind of problems that have been

developed over the last fifty years. The most commonly used is the Markov decision pro-

13

cesses (MDPs). An MDP assumes that the agent has full access to the state of the world and

each of its actions takes a single time step. Semi-Markov decision processes (SMDPs)

relax the latter assumption and allow actions that take several time steps. Finally, par-

tially observable Markov decision processes (POMDPs) relax the former assumption by

allowing the agent to receive observations that do not necessarily reveal the entire state of

the environment. When a problem is modeled using one of the above, the goal of an RL

method is to find a good (possibly optimal) policy for the model. We will cover MDPs

and SMDPs in detail in Sections 2.2 and 2.3. POMDPs will be presented more briefly, as

the subject of partial observability is almost (but not completely) orthogonal to the main

contributions of our work.

2.2 Markov Decision Processes

Markov decision processes (MDPs) (Howard, 1960; Puterman, 1994) are model for

sequential decision making when outcomes are uncertain. There are many possible ways

of defining MDPs, and many of these definitions are equivalent up to small transforma-

tions of the problem. One definition is that an MDP model M consists of five elements

〈S,A,P ,R, I〉 defined as follows:

• S: is the set of states of the world.

• A: is the set of possible actions from which the agent (controller) may choose on at

each decision epoch.

• P : S×A×S → [0, 1]: is the transition probability function with P (s′|s, a) being

the probability of transition to state s′ when agent takes action a in state s.

• R : S × A → IR: is the reward function with r(s, a) being the reward that agent

receives when it takes action a in state s.

• I : S → [0, 1]: is the initial state distribution.

14

The qualifier “Markov” is used because the transition probability and reward functions

depend on the past only through the current state of the system and the action selected by

the decision maker in that state. Since it may not be possible for the agent to take every

action at each state s, we define As ⊆ A as the set of admissible actions in state s. Events

in an MDP proceed as follows. The agent begins in an initial state s0 drawn from the initial

distribution I . At each time t, the agent observes the state of the environment st ∈ S ,

selects an action at ∈ Ast
, as a result of which the state of the system transitions to some

state st+1 ∈ S drawn from the probability transition function P (st+1|st, at), and the agent

receives reward r(st, at).

The method of specifying an agent’s behavior in an MDP is called a policy. A policy

can be stationary, in which case it is a stochastic mapping from states to actions, but it can

also be non-stationary and depend on other factors such as the agent’s memory or internal

state. A stationary policy, µ, can be deterministic, in which case it is a mapping from states

to actions µ : S → A, or stochastic, in which case it is a probability distribution over state-

action pairs µ : S × A → [0, 1]. In the latter case, µ(a|s) represents the probability that

policy µ selects action a in state s.

Now the question arises of the quality of a given policy. There are many ways of

defining optimality, but typically the quality or value of a policy is based on a function

of the future rewards. In Sections 2.2.1, 2.2.2, and 2.2.3, we examine several popular

optimality criteria in the MDP literature.

2.2.1 Undiscounted Reward Markov Decision Processes

In episodic tasks, the environment has one or more absorbing terminal states. All tran-

sitions from an absorbing terminal state lead back into the same state with probability 1.0

and reward 0. Typically in this setting, the goal is to maximize the expected undiscounted

sum of rewards
∑N−1

t=0 r(st, at), where N is the number of time steps taken before reaching

15

an absorbing state. We usually consider only policies that are proper in that all policies

reach an absorbing terminal state with probability 1.0 (Bertsekas and Tsitsiklis, 1996).

In infinite-horizon setting where the agent may take an infinite number of steps, the

undiscounted sum of rewards can be infinite. To avoid this, discounted and average reward

optimality criteria are often used, which we describe in the next two sections.

2.2.2 Discounted Reward Markov Decision Processes

In discounted reward MDPs, near-term rewards are weighted more than distant re-

wards. In this setting, the agent’s goal is to maximize
∑∞

t=0 γtr(st, at). This sum is finite if

the discount factor 0 ≤ γ ≤ 1, and all rewards are bounded. Note that the episodic prob-

lems can be folded into this setting — if all policies are proper and we use a discount factor

of γ = 1, the undiscounted sum of rewards of an episodic task remains finite (Bertsekas

and Tsitsiklis, 1996; Sutton and Barto, 1998).

In the infinite-horizon discounted reward setting, the value function for a policy µ,

V µ : S → IR, is a mapping from states to their values under policy µ. The value of state s

under policy µ expresses the expected discounted sum of future rewards starting from state

s and following policy µ thereafter. Formally, we define the value function of a policy as:

V µ(s) =E
[

r(s0, µ(s0)) + γr(s1, µ(s1)) + γ2r(s2, µ(s2)) + . . . |s0 = s, µ
]

=E

[

∞
∑

t=0

γtr(st, at)|s0 = s, µ

]

We can relate the values of different states using what are known as the Bellman equations

(Bellman, 1957). These equations relate each state to its possible successor states.

V µ(s) =
∑

a∈As

µ(a|s)
[

r(s, a) + γ
∑

s′∈S

P (s′|s, a)V µ(s′)

]

(2.1)

A policy µ is optimal if, for all states, its value is at least as high as the value of any other

policy. It is known (Blackwell, 1962) that there exists a deterministic optimal policy for

16

infinite-horizon discounted reward MDPs. The optimal policy µ∗ is specified as:

µ∗(s) = arg max
a∈A

[

r(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′)

]

where V ∗ is the optimal value function, the value function of the optimal policy. Bellman

proved that the optimal value function is the solution to the following equation:

V ∗(s) = max
µ

V µ(s) = max
a∈As

[

r(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′)

]

(2.2)

Similarly, the action-value function of a policy µ, Qµ : S × A → IR, is defined as a

mapping from state-action pairs to their values. The action-value function Qµ(s, a) for a

policy µ is the expected sum of discounted future rewards for taking action a in state s and

then following policy µ.

Qµ(s, a) = E

[

∞
∑

t=0

γtr(st, at)|s0 = s, a0 = a, µ

]

Note that V µ(s) = Qµ(s, µ(s)). The Bellman equation for the action-value function Qµ

can be written as:

Qµ(s, a) = r(s, a) + γ
∑

s′∈S

P (s′|s, a)
∑

a′∈As′

µ(a′|s′)Qµ(s′, a′)

and the optimal action-value function Q∗ is the solution to the Bellman optimality equation

for action-value function defined as follows:

Q∗(s, a) = max
µ

Qµ(s, a) = r(s, a) + γ
∑

s′∈S

P (s′|s, a) max
a′∈As′

Q∗(s′, a′) (2.3)

The Bellman Equations 2.2 and 2.3 are related by:

V ∗(s) = max
a

Q∗(s, a)

17

An alternative way of defining the optimal value function is based on the Bellman operator

Γ∗ (Bertsekas, 1995) defined as:

Γ∗V µ(s) = max
a∈A

Qµ(s, a)

The optimal value function V ∗ is the fixed point of V ∗ = Γ∗V ∗.

2.2.3 Average Reward Markov Decision Processes

Discounted optimization is motivated by domains where reward can be interpreted as

money that can earn interest, or where there is a fixed probability that a run will be termi-

nated at any given time. However, many domains do not have either of these properties.

Discounting in such domains tends to sacrifice long-term rewards in favor of short-term

rewards. Moreover, in general, the discounted optimal policy depends on the choice of the

value of the discount factor γ. For instance, consider the MDP of Figure 2.1 from Schwartz

(1993). Here, any undiscounted reward method will clearly choose action a1 in state s1.

But for any γ < 500
501
≈ 0.998, Qµ(s1, a2) > Qµ(s1, a1) regardless of policy µ. In fact, given

any γ, there is some value we can set for r(s1, a2) which makes the discounted criterion

favor action a2 over action a1.

s 2

s 3a2

a1

a1 a2

a2a1a1

s 1

−1

+1

+1000

0
,

,

Heaven

Hell

Earth

Figure 2.1. An MDP on which discounted and undiscounted measures may disagree.

It is true that for any finite MDP there is some sufficiently large γ for which the dis-

counted and undiscounted measures agree. However, proper choice of such a γ requires

18

detailed knowledge of the domain — the knowledge that we do not want to presuppose.

Even, with such knowledge, a parameter such as γ that needs to be tailored to suit indi-

vidual domains is clearly undesirable. Therefore, the agent may prefer to compare policies

on the basis of their average expected reward instead of their expected discounted reward.

The aim of the average reward MDP is to compute policies that yield the highest expected

payoff per step. The average reward or gain associated with a particular policy µ, gµ, is

defined as

gµ(s) = lim
N→∞

1

N
E

[

N−1
∑

t=0

r(st, µ(st))|s0 = s, µ

]

A key observation that greatly simplifies the design of the average reward algorithms is

that for unichain MDPs,1 the average reward of any policy is state independent, that is

gµ(s) = gµ,∀s ∈ S .

In average reward MDP, a policy µ is measured using a different value function, namely

the average-adjusted sum of rewards earned following that policy.2

Hµ(s) = lim
N→∞

E

[

N−1
∑

t=0

(r(st, µ(st))− gµ) |µ
]

The term Hµ is usually referred to as the average-adjusted value function. Furthermore,

the average-adjusted value function satisfies the Bellman equation

Hµ(s) + gµ = r(s, µ(s)) +
∑

s′∈S

P (s′|s, µ(s))Hµ(s′)

Similarly, the average-adjusted action-value function for a policy µ, Lµ, is defined, and

it satisfies the Bellman equation

1MDPs in which every stationary policy gives rise to a Markov chain with a single recurrent class.

2This limit assumes that all policies are aperiodic. For periodic policies, it changes to the Cesaro limit

Hµ(s) = limN→∞

∑N−1

k=0
E[
∑k

t=0
(r(st,µ(st))−gµ)|µ]
N

(Puterman, 1994).

19

Lµ(s, a) + gµ = r(s, a) +
∑

s′∈S

P (s′|s, a)Lµ(s′, µ(s′))

We define a gain-optimal policy µ∗ as one that has the maximum average reward over all

policies, that is g∗ ≥ gµ. The gain-optimal policy satisfies the following Bellman optimality

equations for average-adjusted value function and average-adjusted action-value function.

(Bertsekas, 1995).

H∗(s) + g∗ = max
a∈As

[

r(s, a) +
∑

s′∈S

P (s′|s, a)H∗(s′)

]

(2.4)

L∗(s, a) + g∗ = r(s, a) +
∑

s′∈S

P (s′|s, a) max
a∈As′

L∗(s′, a′) (2.5)

It is proved (Howard, 1960; Puterman, 1994) that for any unichain MDP, there exist a g∗ and

a function H∗ over S that satisfy the Equation 2.4 (or a function L∗ over S×A that satisfies

the Equation 2.5). Further, g∗, H∗, and L∗ are gain, average-adjusted value function, and

average-adjusted action-value function of the gain-optimal policy µ∗.

2.2.4 Solution Methods for MDPs

Now that we have defined the MDP model, the next task is to solve it, i.e., to find an

optimal policy and/or the optimal value function.3 There are variety of methods for achiev-

ing this. Some methods require knowing the transition probability and reward functions

and are performed without access to an environment; these are considered offline algo-

rithms. These are the standard dynamic programming (DP) algorithms from the field of

operations research. Having the model allows the simulation of the domain so as to do

planning to find the optimal value function and/or an optimal policy without interacting

3What we really mean by an optimal policy in this section is a reasonably good policy. Since in any
real-world AI problem it is not possible to even imagine finding optimal policies.

20

directly with the environment. Other methods work without assuming prior knowledge of

the model and operate by learning through experience in the environment; these are called

online algorithms.

Since a value function (or an action-value function) defines a policy in an MDP, one

approach to find the optimal policy is to compute the optimal value (action-value) function

first, and then extract the optimal policy from it. We call the algorithms utilizing this ap-

proach, value function based algorithms. Another approach is to directly find the optimal

policy. The methods using this approach are called policy search based methods. In Sec-

tions 2.2.4.1 and 2.2.4.2, we present a brief overview of the above two approaches to solve

an MDP model.

2.2.4.1 Value Function Based Solution Methods for MDPs

Value function based (VFB) methods attempt to find the optimal value (action-value)

function and then extract an optimal policy from it. These algorithms have been extensively

studied in the machine learning literature (Bertsekas and Tsitsiklis, 1996; Sutton and Barto,

1998) and have yielded some remarkable empirical successes in a number of different do-

mains, including learning to play checkers (Samuel, 1959), backgammon (Tesauro, 1994),

job-shop scheduling (Zhang and Dietterich, 1995), dynamic channel allocation (Singh and

Bertsekas, 1996), and elevator scheduling (Crites and Barto, 1998). We now briefly review

some standard VFB algorithms.

If the model is known, then Equation 2.1 defines a system of equations, the solution to

which yields the optimal value function. These equations may either be solved directly via

solving a related linear program (e.g., de Farias (2002); Gordon (1999)), or by iteratively

performing the update

V (s) = max
a

[

r(s, a) + γ
∑

s′∈S

P (s′|s, a)V (s′)

]

21

until it converges. The latter of these is called value iteration (Bertsekas and Tsitsiklis,

1996), which is a DP-based algorithm.

Another standard DP-based algorithm is policy iteration (Bertsekas and Tsitsiklis,

1996). It uses a policy µ and its estimated value function V , and iteratively updates µ

according to

µ(s) = arg max
a∈A

[

r(s, a) + γ
∑

s′∈S

P (s′|s, a)V (s′)

]

and updates V to be the value function V µ for policy µ by solving the system of linear

equations given by Equation 2.1.

Other instances of offline VFB algorithms are asynchronous value iteration and asyn-

chronous policy iteration (Bertsekas and Tsitsiklis, 1996).

If the agent does not know the model of the domain, we may first try to interact with the

environment to learn a model which is then used to compute optimal policies (e.g., Dyna

(Sutton, 1991) and prioritized sweeping (Moore and Atkeson, 1993)). This is known as

Model-based approach. Alternatively, we may try to learn the value (action-value) function

directly and do not explicitly learn a model. This approach is referred to as model-free,

in that the agent does not need to learn the transition probabilities. Most of the model-free

VFB algorithms are instances of the temporal difference (TD) learning (Sutton, 1988),

where the agent updates estimates of the value (action-value) function based in part on

other estimates, without waiting for the true value. Two more popular TD methods are

SARSA (Rummery and Niranjan, 1994; Sutton and Barto, 1998) and Q-learning (Watkins,

1989).

The SARSA algorithm performs the following update upon seeing a transition from

state s to s′ when taking action a:

Q(s, a) = (1− α)Q(s, a) + α [r(s, a) + γQ(s′, a′)]

22

where α is called the learning rate parameter. SARSA causes action-value function Q to

converge to the optimal action-value function, if a GLIE (Greedy in the Limit with Infinite

Exploration) exploration policy is used (Singh et al., 2000a). SARSA is known as an on-

policy method, in that learns about the policy that it executes.

The Q-learning algorithm performs the following update when the agent takes action a

in state s and transitions to state s′:

Q(s, a) = (1− α)Q(s, a) + α

[

r(s, a) + γ max
a′∈A

Q(s′, a′)

]

It can be shown that Q-learning converges with probability 1.0, if the agent uses an explo-

ration policy that takes every state infinitely often and α satisfies some conditions (Jaakkola

et al., 1994; Bertsekas and Tsitsiklis, 1996). Q-learning is known as an off-policy algo-

rithm, meaning that the agent does not have to follow the policy for which it is learning a

value function. This is advantageous in that a wider set of exploration methods are allowed.

Although most of the VFB algorithms have been focused on the discounted setting, av-

erage reward VFB methods have also been well studied. An average reward VFB method is

an undiscounted infinite-horizon method for finding gain-optimal policies of an MDP (Ma-

hadevan, 1996). It is generally appropriate in modeling cyclical control and optimization

tasks, such as queuing, scheduling, and flexible manufacturing (Gershwin, 1994; Puterman,

1994). Several different types of average reward VFB algorithms have been developed in-

cluding offline algorithms such as (Bertsekas, 1998), model-based online methods such

as (Tadepalli and Ok, 1998), discrete-time model-free online algorithms (Schwartz, 1993;

Mahadevan, 1996; Tadepalli and Ok, 1996; Abounadi et al., 2001), and continuous-time

model-free online algorithms (Mahadevan et al., 1997b; Wang and Mahadevan, 1999).

The discussion so far assumes that the state space S is sufficiently small that V can be

stored explicitly as a table, with one entry for each state. For larger MDPs, these methods

can be intractable. Specifically, in many problems, the number of states grows exponen-

tially in the number of state variables. Similarly, if we apply grid-based discretization to

23

an n-dimensional continuous state space to reduce the problem, we again end up with a

number of discretized states that is exponential in n. Bellman called this problem the curse

of dimensionality (Bellman, 1957), and it makes the straightforward application of RL

algorithms impractical even for many moderate-dimensional problems.

Thus, in domains with large or infinite state spaces, one looks for approximation tech-

niques that are based on a parametric representation of value function, rather than exact

representation. A few examples of recent work proposing various approaches for doing so

in different settings include (Van-Roy, 1998; Gordon, 1999; Koller and Parr, 2000; Guestrin

et al., 2001; Dietterich and Wang, 2002; de Farias, 2002), and this topic remains an area of

active research. The approximation methods have had some prominent empirical successes

as mentioned at the beginning of this section. Despite numerous successes, the applica-

tion of VFB methods becomes problematic in domains with large or infinite state spaces.

This is mainly because most algorithms for parametrically approximating value functions

suffer from the following theoretical flaw: the performance of the policy derived from the

approximate value function is not guaranteed to improve on each iteration, and in fact can

be worse than the policy in the previous iteration. This can happen even when the cho-

sen parametric class contains a value function whose derived policy is optimal (Baxter and

Bartlett, 2001). Additionally, VFB methods become problematic when the state is only

partially observable, because most methods for value function estimation critically rely on

the Markov property. In the next section, we will describe an alternative approach to VFB

which addresses some of the above issues, and the problems that may happen when they

are employed in complex domains.

2.2.4.2 Policy Search Based Solution Methods for MDPs

An alternative approach that circumvents the problems of VFB methods mentioned at

the end of Section 2.2.4.1 is to directly search in the space of policies. The methods using

this approach to solve an MDP are known as policy search based (PSB) methods.

24

PSB methods have received much recent attention as a mean to solve problems with

large or infinite state spaces, and problems with partially observable states. The motiva-

tion for this is three fold. 1) For many MDPs, the value and action-value functions can be

difficult to approximate, even though there may be simple, compactly representable poli-

cies that perform very well. Indeed, the existence of a good, compact representation of an

action-value function implies the existence of a good, compact representation of a policy,

because an action-value function defines a policy. In contrast, there is no guarantee that the

existence of a good, compact representation of a policy implies a good, compact represen-

tation of an action-value function. 2) Because PSB algorithms start with a parameterized

policy, it is relatively simple to choose a policy which incorporates prior knowledge via

an appropriate choice of the parametric form of the policy. The use of prior knowledge in

VFB algorithms is not as easily realized. Finally, 3) many real domains are only partially

observable, and VFB algorithms are known to be difficult to implement in such domains.

Conversely, PSB algorithms have been shown to work more effectively in partially observ-

able domains. We might use a class of policies that contains only policies that depend only

on the observables. This results in a class of memoryless (reactive) policies that can be

applied to POMDP models (Williams and Singh, 1999). We can also introduce memory

variables into the process state, and define limited memory policies (Mealeau et al., 1999).

It permits belief state tracking, in which the agent uses past and present observations to

estimate the true state.

Of course, while PSB methods provide a powerful tool for solving many problems in

RL and control, there are also settings in which VFB algorithms may be preferred. For

instance, explicitly searching in a policy space for a good policy may be computationally

expensive and more prone to local optima than certain VFB methods. So, if there is reason

to believe that the value function can be easily approximated, then the VFB approach would

be competitive. Moreover, if we do not have a prior knowledge about a likely form of a

good policy, then one may instead use a VFB algorithm.

25

A well-known class of PSB algorithms are policy gradient based (PGB) algorithms.

In these methods, we usually consider a class of parameterized stochastic policies, esti-

mate the gradient of a performance function (e.g., average reward over time or weighted

reward-to-go) with respect to policy parameters, and then improve the policy by adjusting

the parameters in the direction of the gradient (Williams, 1992; Kimura et al., 1995; Mar-

bach, 1998; Baxter et al., 2001). This approach has a long history in operations research,

statistics, and control, forming the basis of perturbation analysis of discrete event dynamic

systems (Ho and Cao, 1991; Cassandras and Lafortune, 1999). In addition to the pros and

cons of PSB methods mentioned above, one advantage of PGB algorithms compared to

VFB methods is that they are theoretically guaranteed to converge to locally optimal poli-

cies, whereas VFB algorithms can find globally optimal solutions. However, in practice

it is usually not feasible to converge to globally optimal solutions in large domains in any

case. However, PGB methods usually suffer from the following problems. 1) They may

require up to an amount of sampling/number of steps that is exponential in the number of

states or in the horizon time. 2) They are also limited to stochastic policies. In some do-

mains, it seems very undesirable to add extra randomness to an already stochastic problem

by forcing our policy to randomly choose its actions. 3) They generally sample from the

MDP once to take a small uphill step and then throw away the data.

One way to address some of the issues of using PGB methods is to assume that the

learning algorithm has access to the MDP via a generative model or a simulator (Kearns

et al., 2000; Ng and Jordan, 2000; Ng, 2003). Ng et al. (2004) recently showed a very

impressive application of this type of PSB method to autonomous helicopter flight.

2.3 Semi-Markov Decision Processes

Semi-Markov decision processes (SMDPs) (Howard, 1971; Puterman, 1994) extend the

MDP model by allowing actions that take multiple time steps to complete. The action du-

26

ration can depend on the transition that is made.4 The state of the system may change con-

tinually between actions, unlike MDPs where state changes are only due to actions. Thus,

SMDPs have become the preferred language for modeling temporally extended actions

(Mahadevan et al., 1997a), which makes them very appealing in the context of hierarchical

reinforcement learning, as we will see in Section 2.4.3.

An SMDP is defined as a five tuple 〈S,A,P ,R, I〉. All components are defined as

in an MDP except the transition probability function. The transition probability function

P now takes the duration of the actions into account. The transition probability function

P : S×IN×S×A → [0, 1] is a multi-step transition probability function, with P (s′, N |s, a)

denotes the probability that action a will cause the system to transition from state s to

state s′ in N time steps. This transition is at decision epochs only. Basically, the SMDP

model represents snapshots of the system at decision points, whereas the so-called natural

process describes the evolution of the system over all times.

The notions of policies and the various forms of optimality are the same for SMDPs as

for MDPs. In infinite-horizon SMDPs, our goal is still to find a policy that maximizes either

the expected discounted reward or the average expected reward. These two optimality

criteria for an SMDP model will be discussed in sections 2.3.1 and 2.3.2.

2.3.1 Discounted Reward Semi-Markov Decision Processes

Recall that for a discounted MDP model, we expressed the expected value for follow-

ing a policy as E [
∑∞

t=0 γtr(st, µ(st))|µ]. In discounted SMDP, because actions can take

variable amounts of time, the value of a state s under a policy µ is defined as follows:

V µ(s) = E
[

r(s0, µ(s0)) + γN0r(s1, µ(s1)) + γN0+N1r(s2, µ(s2)) + . . . |s0 = s, µ
]

4We are thus dealing with discrete-time SMDPs. Continuous-time SMDPs typically allow arbitrary con-
tinuous action durations.

27

Now we can express the Bellman equations for discounted SMDPs as

V µ(s) = r(s, µ(s)) +
∑

s′∈S,N∈IN

γNP (s′, N |s, µ(s))V µ(s′)

Qµ(s, a) = r(s, a) +
∑

s′∈S,N∈IN

γNP (s′, N |s, a)Qµ(s′, µ(s′))

Similarly, we can write the Bellman optimality equations defining the optimal value func-

tion and optimal action-value function as

V ∗(s) = max
a

[

r(s, a) +
∑

s′∈S,N∈IN

γNP (s′, N |s, a)V ∗(s′)

]

Q∗(s, a) = r(s, a) +
∑

s′∈S,N∈IN

γNP (s′, N |s, a) max
a′∈As′

Q∗(s′, a′)

2.3.2 Average Reward Semi-Markov Decision Processes

The theory of infinite-horizon SMDPs with the average reward criterion is more com-

plex than that for discounted models (Howard, 1971; Puterman, 1994). To simplify expo-

sition we consider only unichain SMDPs. Under this assumption, the gain of any policy is

state independent similar to the average reward MDP model.

The average expected reward or gain for a policy µ, gµ, can be defined by taking the

ratio of the expected total reward and the number of decision epochs.

gµ = lim inf
n→∞

E
[

∑N−1
t=0 r(st, at)|µ

]

N

28

For each transition, the expected number of time steps until the next decision epoch is

defined as

y(s, a) = E[N |s, a] =
∑

N∈IN

N
∑

s′∈S

P (s′, N |s, a)

The Bellman equations for the average-adjusted value function Hµ and the average-adjusted

action-value function Lµ can be written as

Hµ(s) = r(s, µ(s))− gµy(s, µ(s)) +
∑

s′∈S,N∈IN

P (s′, N |s, µ(s))Hµ(s′)

Lµ(s, a) = r(s, a)− gµy(s, a) +
∑

s′∈S,N∈IN

P (s′, N |s, a)Lµ(s′, µ(s′))

2.3.3 Solution Methods for SMDPs

Almost all the standard solution methods for MDPs generalize easily to SMDPs. Re-

vised policy and value iteration algorithms are straightforward, using the SMDP Bellman

equations but with all other elements remaining the same. It can be shown that these algo-

rithms converge (Howard, 1971; Puterman, 1994).

Online algorithms such as SARSA and Q-learning also generalize to the SMDP case.

Parr (1998) showed that the following version of Q-learning converges in the SMDP case

with several small differences in the conditions and assumptions of the proof.

Q(s, a) = (1− α)Q(s, a) + α

[

r + γN max
a′∈A

Q(s′, a′)

]

This is the update formula when the agent takes action a in state s, transitions to state s′,

this transition takes N time steps, and the agent receives reward r on its way to state s′.

29

2.4 Hierarchy and Temporal Abstraction

Reasoning and learning about temporally extended actions has been studied extensively

in several fields including classical AI, control theory, and RL. In this section, we look at

the historical development of hierarchy and temporal abstraction in classical AI, control,

and RL.

2.4.1 Temporal Abstraction in Classical AI

The problem of using abstraction to facilitate planning has been a key focus of AI

research since its early days. The key idea was to replace the low-level actions available to

solve a given task by macro operators, open-loop sequences of actions that can achieve

some subgoal. It can provide exponential reduction in the computational cost of finding

good plans.

Different forms of representation have been used for macro-operators, such as proce-

dural nets (Sacerdoti, 1974), and hierarchical task networks (Currie and Tate, 1991). All

these representations have these issues in common, the way in which the macro-operator

selects actions, and the model it uses to predict its consequences. However, the key issue

is learning useful macro-operators, which can be reused to solve different planning prob-

lems. Korf (1985) introduced a method which decomposes a planning problem to a set of

independent and serializable subgoals, solves subgoals individually, and then combines the

corresponding macro-operators to solve the larger planning problems. The SOAR system

(Laird et al., 1986) used a chunking mechanism, by which action sequences used to solve

subtasks were memorized as macro-operators. Knoblock (1990) addressed the learning of

macro-operators with the pre-conditions under which they succeed or fail. His work identi-

fies conditions under which a solution obtained in an abstracted state and action space can

be indeed executed. Drescher (1991) advocated a constructive approach in which knowl-

edge about the world is gradually acquired in the form of schemas, elementary models

containing a context (state), an action, and a result (new state). Schemas are built with the

30

purpose of capturing regularities in the environment, and subsequently are used to construct

new composite actions, by sequencing existing primitives.

More recent research even takes into account the assumption of stochastic environment

in which the plans have to be executed (Oates and Cohen, 1996; Brafman and Tennenholtz,

1997). Probabilistic and statistical methods such as belief and value function, as well as

closed-loop behaviors are used to deal with such environments.

2.4.2 Temporal Abstraction in Control

Modeling and control of multiple time scale systems is an active research area in control

theory where temporally extended actions and models have been extensively used. Multiple

scale systems are often characterized by a fast motion superimposed over a slow motion. If

the two motions do not influence each other, then the fast motion can be modeled and then

eliminated to analyze the slow motion.

Perhaps the first application of temporal abstraction in stochastic control is the work by

Forestier and Varaiya (1978). They proposed using a two layer system where a supervisor at

the higher layer monitors the plant and intervenes only when the plant reaches a predefined

boundary condition, and lower-level controls the plant between the boundary conditions.

The problem of choosing the optimal lower-level controller at each boundary state is a

decision problem operating at a slower time scale with only the boundary states as states

and only the lower-level controllers as actions.

The problem of controlling a system at multiple time scales has also been addressed

by singular perturbation methods (Kokotovic et al., 1986; Ho and Cao, 1991; Cao et al.,

2002). These methods assume that the system to be controlled has state variables with fast

and slow variations. Each type of variation is modeled separately which leads to a form of

hierarchical control. The slow variation states are ignored initially, and are controlled only

after the fast variation states have been accounted for.

31

2.4.3 Temporal Abstraction in Reinforcement Learning

Temporally extended actions have been studied in hierarchical probabilistic planning

and hierarchical reinforcement learning (HRL). HRL is a general framework for scaling

RL to problems with large state spaces by using the task (or action) structure to restrict the

space of policies. The key principle underlying HRL is to develop learning algorithms that

do not need to learn policies from scratch, but instead reuse existing policies for simpler

subtasks (or macro-actions). Macros form the basis of hierarchical specifications of action

sequences because macros can include other macros in their definitions. It is similar to

the familiar idea of subroutine from programming languages. A subroutine can call other

subroutines as well as execute primitive commands. Most of the existing HRL models have

roughly the same semantics as hierarchies of macros. However, a macro as an open-loop

control policy is inappropriate for most interesting control purposes, especially the control

of stochastic systems. HRL methods generalize the macro idea to closed-loop policies or

more precisely, closed-loop partial policies because they are generally defined for a subset

of the state space. The partial policies must also have well-defined termination conditions.

These partial policies with well-defined termination conditions are sometimes called tem-

porally extended actions. Work in HRL has followed three main trends: focusing on

subsets of the state space in a divide-and conquer approach (state space decomposition),

grouping sequences or sets of actions together (temporal abstraction), and ignoring differ-

ences between states based on the context (state abstraction). Much of the work falls into

several of these categories.

Singh (1992) introduced hierarchies of abstract actions, which achieve different tasks,

as well as a hierarchy of models with variable temporal resolution. Singh used a special

purpose gating architecture to switch between abstract actions, and specialized learning

algorithms for this architecture. Kaelbling (1993a,b) proposed the idea of using subgoals

both in order to learn sub-policies and to collapse the state space. Dayan and Hinton (1993)

presented Feudal RL, a hierarchical technique which uses both temporal abstraction and

32

state abstraction. It recursively partitions the state space and the time scale from one level

to the next.

The difficulty with using the above methods was that decisions in HRL are no longer

made at synchronous time steps, as in traditionally assumed in RL. Instead, agent makes

decision in epochs of variable length, such as when a distinguishing state is reached (e.g., an

intersection in a robot navigation task), or a subtask is completed (e.g., the elevator arrives

on the first floor). Fortunately, a well-known statistical model is available to treat variable

length actions: the SMDP model described in Section 2.3. Here, state transition dynamics

is specified not only by the state where an action was taken, but also by parameters speci-

fying the length of time since the action was taken. Early work in RL on the SMDP model

studied extensions of algorithms such as Q-learning to continuous-time (Bradtke and Duff,

1995; Mahadevan et al., 1997b). The early work on SMDP model was then expanded to in-

clude hierarchical task models over fully or partially specified lower level subtasks, which

led to developing powerful HRL models such as hierarchical abstract machines (HAMs)

(Parr, 1998), options (Sutton et al., 1999; Precup, 2000), MAXQ (Dietterich, 2000), and

programmable HAMs (PHAMs) (Andre and Russell, 2001; Andre, 2003). In the options

model (at least in its simplest form), Sutton et. al. studied how to learn policies given fully

specified policies for executing subtasks. In the HAMs formulation, Parr showed how hi-

erarchical learning could be achieved even when the policies for lower-level subtasks were

only partially specified. The MAXQ model is one of the first methods to combine temporal

abstraction with state abstraction. It provides a more comprehensive framework for hierar-

chical learning where instead of policies for subtasks, the learner is given pseudo-reward

functions. Unlike options and HAMs, MAXQ does not rely directly on reducing the entire

problem to a single SMDP. Instead, a hierarchy of SMDPs is created whose solutions can

be learned simultaneously. The key feature of MAXQ is the decomposed representation of

the value function. Dietterich views each subtask as a separate MDP, and thus represents

the value of a state within that MDP as composed of the reward for taking an action at that

33

state (which might be composed of many rewards along a trajectory through a subtask) and

the expected reward for completing the subtask. To isolate the subtask from the calling

context, Dietterich uses the notion of a pseudo-reward. At the terminal states of a subtask,

the agent is rewarded according to the pseudo-reward, which is set a priori by the designer

and does not depend on what happens after leaving the current subtask. Each subtask can

then be treated in isolation from the rest of the problem with the caveat that the solutions

learned are only recursively optimal. Each action in the recursively optimal policy is op-

timal with respect to the subtask containing the action, all descendant subtasks, and the

pseudo-reward chosen by the designer of the system. Another important contribution of

Dietterich’s work is the idea that state abstraction can be done separately on the different

components of the value function, which allows one to perform more abstraction. We in-

vestigate the MAXQ framework and its related concepts such as pseudo-reward, recursive

optimality, value function decomposition, and state abstraction in more details in Chapter

3. In the PHAMs model, Andre and Russell extended HAMs and presented an agent design

language for RL. Andre and Russell (2002) also addressed the issue of safe state abstraction

in HRL. Their method yields state abstraction while maintaining hierarchical optimality.

HRL has also been successfully applied to behavior-based robotics (Brooks, 1986) in

several applications (Mahadevan and Connell, 1992; Lin, 1993; Digney, 1996; Mataric,

1997; Huber and Grupen, 1997). Mahadevan and Connell used a subsumption architecture

in which simple behaviors are acquired using RL and then are combined by a pre-defined

scheme to solve a complex robot box-pushing task. Lin used the decomposition of a com-

plex task into smaller subtasks, each having its own limited state space and its own reward

function. A robot can learn a behavior for solving each subtask, and then use RL at the

higher level in order to determine the best combination of sub-behaviors. Huber used RL

and a hybrid discrete event dynamical system to learn walking gaits for a robot. At the low

level, the robot uses a set of pre-existing controllers that can generate collision-free motion

and optimize forces and posture. At the higher level, RL is used to determine which con-

34

troller should be applied, depending on a set of discrete variables describing the state of the

system.

Recent research is also targeted toward finding temporally extended actions automati-

cally. Thrun and Schwartz (1995) and Pickett and Barto (2002) generate temporal abstrac-

tions by finding commonly occurring sub-policies in solutions to a set of tasks. Digney

(1996), McGovern and Barto (2001), Menache et al. (2002), and Simsek and Barto (2004)

identify subgoal states and generate temporally extended actions that take the agent to these

states. Digney’s subgoals are states that are visited frequently or that have a high reward

gradient. McGovern and Barto’s method identifies as subgoals those regions of the state

space that the agent visits frequently on successful trajectories but not on unsuccessful

ones. Menache et al. define subgoals as the border states of strongly connected areas

of the MDP transition graph and find them using a max-flow/min-cut algorithm. Simsek

and Barto propose a method to identify useful temporal abstractions using relative novelty.

Their definition of novelty relates it to how frequently a state is visited since a designated

start time. They define relative novelty of a state in a transition sequence as the ratio of

the novelty of states that followed it (including itself) to the novelty of the states that pre-

ceded it. Hengst (2002) and Jonsson and Barto (2005) proposed constructing a hierarchy

of abstractions in problems with factored state spaces. Hengst’s method orders state vari-

ables with respect to their frequency of change and adds a layer of hierarchy for each state

variable, where each layer handles a smaller MDP than its lower layers. Jonsson and Barto

determine causal relationships between state variables using a dynamic Bayesian network

(DBN) model of factored MDPs and like Hengst’s algorithm, their algorithm introduces

layers of temporally extended actions based on the causal structure of the task. Mannor

et al. (2004) find clusters of states and define temporally extended actions as a sub-policy

that allows the agent to efficiently shift from one cluster to the other. They use two differ-

ent clustering mechanisms, one that employs only topology, and one that uses the reward

structure of the problem in addition to topology.

35

2.5 Multi-Agent Reinforcement Learning

The analysis of multi-agent systems is a topic of interest in both economic theory and

AI. Their integration with existing methods in AI constitutes a promising area of research.

An optimal policy in a multi-agent system may depend on the behavior of other agents,

which is often not predictable. It makes learning and adaptation a necessary component

of the agent. Multi-Agent learning studies algorithms for selecting actions for multiple

agents coexisting in the same environment. This is a complicated problem, because the

behaviors of the other agents can be changing as they also adapt to achieve their own

goals. It usually makes the environment non-stationary and often non-Markovian as well

(Mataric, 1997). Robosoccer; disaster rescue, where robots must safely find victims as fast

as possible after an earthquake; e-commerce; manufacturing systems, where managers of a

factory coordinate to maximize the profit; and distributed sensor networks, where multiple

sensors collaborate to perform a large-scale sensing task under strict power constraints

are examples of challenging multi-agent domains that need robust learning algorithms for

coordination among multiple agents or effectively responding to other agents (Weiss, 1999;

Lesser et al., 2003).

In addition to the existing methods in distributed AI and machine learning, game the-

ory also provides a framework for research in multi-agent learning. The game theoretic

concepts of stochastic game and Nash equilibria (Owen, 1995; Filar and Vrieze, 1997)

are the foundation for much of the recent research in multi-agent learning. Learning al-

gorithms use stochastic games as a natural extension of MDPs to multiple agents. These

algorithms can be summarized by broadly grouping them into two categories: equilib-

ria learners and best-response learners. Equilibria learners such as Nash-Q (Hu and

Wellman, 1998), Minimax-Q (Littman, 1994), Friend-or-Foe-Q (Littman, 2001), and the

gradient ascent learner in (Singh et al., 2000b) seek to learn an equilibrium of the game

by iteratively computing intermediate equilibria. They guarantee convergence to their part

of an equilibrium solution regardless of the behavior of the other agents. On the other

36

hand, best-response learners seek to learn the best response to the other agents. Although

not an explicitly multi-agent algorithm, Q-learning (Watkins, 1989) was one of the first

algorithms applied to multi-agent problems (Tan, 1993; Crites and Barto, 1998). Joint-

state/joint-action learners (Boutilier, 1999) and WoLF-PHC (Bowling and Veloso, 2002)

are another examples of a best-response learner. It has been shown by Bowling and Veloso

(2002) that if an algorithm in which best-response learners playing with each other con-

verges, it must be to a Nash equilibrium.

Multi-Agent learning has been recognized to be challenging for two main reasons: 1)

curse of dimensionality: the number of parameters to be learned increases dramatically

with the number of agents, and 2) partial observability: states and actions of the other

agents which are required for an agent to make decision are not fully observable and inter-

agent communication is usually costly.

Prior work in multi-agent learning have addressed the curse of dimensionality in many

different ways. One natural approach is to restrict the amount of information that is avail-

able to each agent and hope to maximize the global payoff by solving local optimization

problems for each agent. This idea has been addressed using value function based RL

(Schneider et al., 1999) as well as policy gradient based RL (Peshkin et al., 2000). An-

other approach is to exploit the structure in a multi-agent problem using factored value

functions. Guestrin et al. (2002) integrate these ideas in collaborative multi-agent domains.

They use value function approximation and approximate the joint value function as a linear

combination of local value functions, each of which relates only to the parts of the system

controlled by a small number of agents. Factored value functions allow the agents to find

a globally optimal joint-action using a message passing scheme. However, this approach

does not address the communication cost in its message passing strategy.

Graphical models have also been used to address the curse of dimensionality in multi-

agent systems. This work seeks to transfer the representational and computational benefits

that graphical models provide to probabilistic inference in multi-agent systems and game

37

theory (Koller and Milch, 2001; La-Mura, 2000). The previous work established algorithms

for computing Nash equilibria in one-stage games, including efficient algorithms for com-

puting approximate (Kearns et al., 2001) and exact (Littman et al., 2002) Nash equilibria in

tree-structured games, and convergent heuristics for computing Nash equilibria in general

graphs (Ortiz and Kearns, 2003; Vickrey and Koller, 2002).

The curse of dimensionality has also been addressed in multi-agent robotics. Multi-

robot learning methods usually reduce the complexity of the problem by not modeling joint

states or actions explicitly, such as work by Balch (Balch and Arkin, 1998) and Mataric

(Mataric, 1997), among others. In such systems, each robot maintains its position in a

formation depending on the locations of the other robots, so there is some implicit commu-

nication or sensing of states and actions of the other agents. There has also been work on

reducing the parameters needed for Q-learning in multi-agent domains by learning action-

values over a set of derived features (Stone and Veloso, 1999). These derived features are

domain specific and have to be encoded by hand, or constructed by a supervised learning

algorithm.

Almost all the above methods ignore the problem that an agent might not have free

access to the other agents’ information that are required to make its own decision. In gen-

eral, the world is partially observable for each agent in a distributed multi-agent setting.

POMDPs have been used to model partial observability in probabilistic AI. The POMDP

framework can be extended to allow for multiple distributed agents to base their decisions

on their local observations. This model is called decentralized POMDP (DEC-POMDP)

and it has been shown that the decision problem for a DEC-POMDP is NEXP-complete

(Bernstein et al., 2000). One way to address partial observability in distributed multi-

agent domains is to use communication to exchange required information. However, since

communication can be costly, in addition to its normal actions, each agent needs to de-

cide about communication with other agents (Xuan et al., 2001; Xuan and Lesser, 2002).

Pynadath and Tambe (Pynadath and Tambe, 2002) extended DEC-POMDP by including

38

communication decisions in the model, and proposed a framework called communicative

multi-agent team decision problem (COM-MTDP). Since DEC-POMDP can be reduced

to COM-MTDP with no communication by copying all the other model features, decision

problem for a COM-MTDP is also NEXP-complete (Pynadath and Tambe, 2002). The

trade-off between the quality of solution, the cost of communication, and the complexity of

the model is currently a very active area of research in multi-agent learning and planning.

39

CHAPTER 3

A FRAMEWORK FOR HIERARCHICAL REINFORCEMENT
LEARNING

In this chapter, we introduce a general framework for hierarchical reinforcement learn-

ing for simultaneous learning of policies at multiple levels of hierarchy. Our treatment

builds upon the existing approaches such as HAMs (Parr, 1998), options (Sutton et al.,

1999; Precup, 2000), MAXQ (Dietterich, 2000), and PHAMs (Andre and Russell, 2002;

Andre, 2003), especially the MAXQ value function decomposition. In our framework,

we add three-part value function decomposition (Andre and Russell, 2002) to guarantee

hierarchical optimality, and reward shaping (Ng et al., 1999) to reduce the burden of ex-

ploration, to the MAXQ method. Rather than redundantly explain MAXQ and then our

hierarchical framework, we will present our model and note throughout this chapter where

the key pieces were inspired by or are directly related to Dietterich’s MAXQ work. In the

following chapters, we first extend this framework to the average reward model, then we

generalize it to be applicable to problems with continuous state and/or action spaces, and

finally broaden it to be applicable to domains with multiple cooperative agents.

3.1 Motivating Example

In the HRL framework, the designer of the system imposes a hierarchy on the problem

to incorporate domain knowledge and thereby reduces the size of the space that must be

searched to find a good policy. The designer recursively decomposes the overall task into a

collection of subtasks that she believes are important for solving the problem.

Let us illustrate the main ideas using a simple search task shown in Figure 3.1. Consider

the case where, in an office (rooms and connecting corridors) type environment, a robot is

40

assigned the task of picking up trash from trash cans (T1 and T2) over an extended area

and accumulating it into one centralized trash bin (Dump), from where it might be sent for

recycling or disposed. For simplicity, we assume that the robot can observe its true location

in the environment. The main subtasks in this problem are root (the whole trash collection

task), collect trash at T1 and T2, navigate to T1, T2, and Dump. Each of these subtasks

is defined by a set of termination states. After defining subtasks, we must indicate for each

subtask, which other subtasks or primitive actions it should employ to reach its goal. For

example, navigate to T1, T2, and Dump use three primitive actions find wall, align with

wall, and follow wall. Collect trash at T1 uses two subtasks navigate to T1 and Dump,

plus two primitive actions Put and Pick, and so on. Like MAXQ, all of this information can

be summarized by a directed acyclic graph called the task graph. The task graph for the

trash collection problem is shown in Figure 3.1. This hierarchical model is able to support

state abstraction (while the agent is moving toward the Dump, the status of trash cans

T1 and T2 is irrelevant and cannot affect this navigation process. Therefore, the variables

defining the status of trash cans T1 and T2 can be removed from the state space of the

navigate to Dump subtask) and subtask sharing (if the system could learn how to solve

the navigate to Dump subtask once, then the solution could be shared by both collect trash

at T1 and T2 subtasks).

Like HAMs (Parr, 1998), options (Sutton et al., 1999; Precup, 2000), MAXQ (Diet-

terich, 2000), and PHAMs (Andre and Russell, 2001; Andre, 2003), this framework also

relies on the theory of SMDPs. While SMDP theory provides the theoretical underpin-

nings of temporal abstraction by modeling for actions that take varying amounts of time,

the SMDP model provides little in the way of concrete representational guidance, which

is critical from a computational point of view. In particular, the SMDP model does not

specify how tasks can be broken up into subtasks, how to decompose value functions etc.

We examine these issues next.

41

Collect Trash at T1 Collect Trash at T2

Navigate to T1 Pick PutNavigate to Dump Navigate to T2

Root

Find Wall Align with Wall Follow Wall

Room3

Corridor

A

Dump

T2

T1

Room1

Room2

A : Agent

Dump: Location for depositing all trash
T2: Location of another trash can
T1: Location of one trash can

Figure 3.1. A robot trash collection task and its associated task graph.

As in MAXQ, a task hierarchy such as the one illustrated above can be modeled by

decomposing the overall task MDPM, into a finite set of subtasks {M0,M1, . . . ,Mm−1},

where M0 is the root task and solving it solves the entire MDPM.

Definition 3.1: Each non-primitive subtask i (i is not a primitive action) consists of five

components (Si, Ii, Ti, Ai, Ri):

• Si is the state space for subtask i. It is described by those state variables that are

relevant to subtask i. The range of the state variables describing Si might be a subset

of their range in S (the state space of MDPM).

• Ii is the initiation set for subtask i. Subtask i can be initiated only in states belonging

to Ii.

• Ti is the set of terminal states for subtask i. Subtask i terminates when it reaches a

state in Ti. The policy for subtask i can only be executed if the current state s belongs

to (Si − Ti).

• Ai is the set of actions that can be performed to achieve subtask i. These actions can

either be primitive actions from A (the set of primitive actions for MDPM), or they

42

can be other subtasks. Technically, Ai is a function of states, since it may differ from

one state to another. However, we will suppress this dependence in our notation.

• Ri is the reward structure inside subtask i and could be different from the reward

function of MDP M. Here we use the idea of reward shaping (Ng et al., 1999)

and define a more general reward structure than MAXQ’s, which specifies a pseudo-

reward only for transitions to terminal states. Reward shaping is a method for guiding

an agent toward a solution without constraining the search space. Besides the reward

of the overall task MDPM, each subtask i can use additional rewards to guide its

local learning. Additional rewards are only used inside each subtask and do not

propagate to upper levels in the hierarchy. If the reward structure inside a subtask is

different from the reward function of the overall task, we need to define two types of

value functions for each subtask, internal value function and external value function.

The internal value function is defined based on both the local reward structure of

the subtask and the reward of the overall task, and only used in learning the subtask.

On the other hand, the external value function is defined only based on the reward

function of the overall task and is propagated to the higher levels in the hierarchy

to be used in learning the global policy. This reward structure for each subtask in

our framework is more general than the one in MAXQ, and of course, includes the

MAXQ’s pseudo-reward. �

Each primitive action a is a primitive subtask in this decomposition, such that a is

always executable and it terminates immediately after execution. From now on in this

paper, we use subtask to refer to non-primitive subtasks.

3.2 Policy Execution

If we have a policy for each subtask in the hierarchy, we can define a hierarchical pol-

icy for the model.

43

Definition 3.2: A hierarchical policy µ is a set with a policy for each of the subtasks

in the hierarchy: µ = {µ0, . . . , µm−1}. �

The hierarchical policy is executed using a stack discipline, similar to ordinary program-

ming languages. Each subtask policy takes a state and returns the name of a primitive

action to execute or the name of a subtask to invoke. When a subtask is invoked, its name

is pushed onto the Task-Stack and its policy is executed until it enters one of its terminal

states. When a subtask terminates, its name is popped off the Task-Stack. If any subtask on

the Task-Stack terminates, then all subtasks below it are immediately aborted, and control

returns to the subtask that had invoked the terminated subtask. Hence, at any time, the root

task is located at the bottom and the subtask which is currently being executed is located at

the top of the Task-Stack.

Under a hierarchical policy µ, we define a multi-step transition probability P µ
i : Si ×

IN× Si → [0, 1] for each subtask i in the hierarchy, where P µ
i (s′, N |s) denotes the proba-

bility that action µi(s) will cause the system to transition from state s to state s′ in N time

steps. We also define a multi-step abstract transition probability F µ
i : Si× IN×Si → [0, 1]

for each subtask i under the hierarchical policy µ. The term F µ
i (s′, N |s) denotes the N -step

abstract transition probability from state s to state s′ under hierarchical policy µ, where n is

the number of actions taken by subtask i, not the number of primitive actions taken in this

transition. In this paper, we use the multi-step abstract transition probability F µ to model

state transition at the subtask level and the multi-step transition probability P µ to model

state transition at the level of primitive actions.

3.3 Local versus Global Optimality

Using hierarchy reduces the size of the space that must be searched to find a good pol-

icy. However, the hierarchy constrains the space of possible policies so that it may not be

44

possible to represent the optimal policy or its value function and hence make it impossible

to learn the optimal policy. If we cannot learn the optimal policy, the next best target would

be to learn the best policy that is consistent with the given hierarchy. Two notions of op-

timality have been explored in the previous work on hierarchical reinforcement learning,

hierarchical optimality and recursive optimality (Dietterich, 2000).

Definition 3.3: Hierarchical optimality is a global optimum consistent with the given hier-

archy. In this form of optimality, the policy for each individual subtask is not necessarily

optimal, but the policy for the entire hierarchy is optimal. The HAMQ HRL algorithm

(Parr, 1998) and the SMDP Q-learning algorithm for a fixed set of options (Sutton et al.,

1999; Precup, 2000) both converge to a hierarchically optimal policy. In other words, a

hierarchical optimal policy for MDPM is a hierarchical policy which has the best perfor-

mance among all policies consistent with the given hierarchy. �

Definition 3.4: Recursive optimality (first introduced by Dietterich (2000)) is a weaker

but more flexible form of optimality which only guarantees that the policy of each sub-

task is optimal given the policies of its children. It is an important and flexible form of

optimality because it permits each subtask to learn a locally optimal policy while ignoring

the behavior of its ancestors in the hierarchy. This increases the opportunities for subtask

sharing and state abstraction. The MAXQ-Q HRL algorithm (Dietterich, 2000) converges

to a recursively optimal policy. �

3.4 Value Function Definitions

For recursive optimality, the goal is to find a hierarchical policy µ = {µ0, . . . , µn}

such that for each subtask Mi in the hierarchy, the expected cumulative reward of execut-

ing policy µi and the policies of all descendants of Mi is maximized. In this case, the value

function to be learned for subtask i under hierarchical policy µ must contain only the re-

45

ward received during the execution of subtask i. We call this the projected value function

after Dietterich (2000) and define it as follows:

Definition 3.5: The projected value function of a hierarchical policy µ on subtask Mi,

denoted V̂ µ(i, s), is the expected cumulative reward of executing policy µi and the policies

of all descendants of Mi starting in state s ∈ Si until Mi terminates. �

The expected cumulative reward outside a subtask is not a part of its projected value func-

tion. It makes the projected value function of a subtask dependent only on the subtask and

its descendants.

On the other hand, for hierarchical optimality, the goal is to find a hierarchical pol-

icy that maximizes the expected cumulative reward. In this case, the value function to be

learned for subtask i under hierarchical policy µ must contain the reward received during

the execution of subtask i and the reward after subtask i terminates. We call this the hi-

erarchical value function following Dietterich (2000). The hierarchical value function of

a subtask includes the expected reward outside the subtask and therefore depends on the

subtask and all its ancestors up to the root of the hierarchy. In the case of hierarchical opti-

mality, we need to consider the contents of the Task-Stack as an additional part of the state

space of the problem, since a subtask might be shared by multiple parents.

Definition 3.6: Ω is the space of possible values of the Task-Stack for hierarchyH. �

Let us define joint state space X = Ω × S for the hierarchy H as the cross product of

the Task-Stack values Ω and the states space S . We define the hierarchical value function

using joint state space X as

Definition 3.7: A hierarchical value function for subtask Mi in state x = (ω, s) and under

46

hierarchical policy µ, denoted V µ(i, x), is the expected cumulative reward of following the

hierarchical policy µ starting in state s ∈ Si and Task-Stack ω. �

The current subtask i is a part of the Task-Stack ω and as a result is a part of the state

x. So we can exclude it from the hierarchical value function notation and write V µ(i, x) as

V µ(x). However for clearance, we use V µ(i, x) in the rest of this dissertation.

Theorem 3.1: Under a hierarchical policy µ, each subtask i can be modeled by an SMDP

consisting of components (Si, Ai, P
µ
i , R̄i), where ∀a ∈ Ai, R̄i(s, a) = V̂ µ(a, s). �

This theorem is similar to Theorem 1 in (Dietterich, 2000). Using this theorem, we can de-

fine a recursive optimal policy for MDPM with hierarchical decomposition {M0,M1, . . .

,Mn} as a hierarchical policy µ = {µ0, . . . , µn} such that for each subtask Mi, the corre-

sponding policy µi is optimal for the SMDP defined by the tuple (Si, Ai, P
µ
i , R̄i).

3.5 Value Function Decomposition

A value function decomposition splits the value of a state or a state-action pair into mul-

tiple additive components. Modularity in the hierarchical structure of a task allows us to

carry out this decomposition along subtask boundaries. In this section, we first describe the

two-part or MAXQ decomposition proposed by Dietterich (2000) and then the three-part

decomposition proposed by Andre and Russell (2002). We use both these decompositions

in our hierarchical framework depending on the type of optimality (hierarchical or recur-

sive) that we are interested in.

The two-part value function decomposition is at the center of the MAXQ method. The

purpose of this decomposition is to decompose the projected value function of the root task,

V̂ µ(0, s), in terms of the projected value functions of all of the subtasks in the hierarchy.

The projected value of subtask i at state s under hierarchical policy µ can be written as

47

V̂ µ(i, s) = E

[

∞
∑

k=0

γkr(sk, ak)|s0 = s, µ

]

(3.1)

Now let us suppose that the first action chosen by µi is invoked and it executes for a number

of steps N and terminates in state s′ according to P µ
i (s′, N |s). We can re-write Equation

3.1 as

V̂ µ(i, s) = E

[

N−1
∑

k=0

γkr(sk, ak) +
∞
∑

k=N

γkr(sk, ak)|s0 = s, µ

]

(3.2)

The first summation on the right-hand side of Equation 3.2 is the discounted sum of re-

wards for executing subtask µi(s) starting in state s until it terminates, in other words, it

is V̂ µ(µi(s), s), the projected value function of the child task µi(s). The second term on

the right-hand side of the equation is the projected value of state s′ for the current task i,

V̂ µ(i, s′), discounted by γN , where s′ is the current state when subroutine µi(s) terminates

and N is the number of transition steps from state s to state s′. We can write Equation 3.2

in the form of a Bellman equation:

V̂ µ(i, s) = V̂ µ(µi(s), s) +
∑

s′,N

P µ
i (s′, N |s)γN V̂ µ(i, s′) (3.3)

Equation 3.3 can be re-stated for the projected action-value function as follows:

Q̂µ(i, s, a) = V̂ µ(a, s) +
∑

s′,N

P µ
i (s′, N |s, a)γNQ̂µ(i, s′, µi(s

′)) (3.4)

The right-most term in this equation is the expected discounted cumulative reward of com-

pleting subtask i after executing action a in state s. Dietterich called this term completion

function and is denoted by Cµ(i, s, a). With this definition, we can express the projected

action-value function recursively as

Q̂µ(i, s, a) = V̂ µ(a, s) + Cµ(i, s, a) (3.5)

48

and we can re-express the definition for projected value function as

V̂ µ(i, s) =











Q̂µ(i, s, µi(s)) if i is a composite action,
∑

s′ P (s′|s, i)r(s, i) if i is a primitive action.
(3.6)

Equations 3.5 and 3.6 are referred to as two-part decomposition equations for a hierarchy

under a fixed hierarchical policy µ. These equations recursively decompose the projected

value function for the root into the projected value functions for the individual subtasks,

M1, . . . ,Mm−1, and the individual completion functions Cµ(j, s, a) for j = 1, . . . m − 1.

The fundamental quantities that must be stored to represent the value function decomposi-

tion are the C values for all non-primitive subtasks and the V values for all primitive ac-

tions.1 The two-part decomposition is summarized graphically in Figure 3.2. As mentioned

in Section 3.4, since the expected reward after execution of subtask i is not a component of

the projected action-value function, the two-part decomposition allows only for recursive

optimality.

Andre and Russell (2002) proposed a three-part value function decomposition for achiev-

ing hierarchical optimality. They add a third component for the expected sum of rewards

outside the current subtask to the two-part value function decomposition. This decomposi-

tion decomposes the hierarchical value function of each subtask into three parts. As shown

in Figure 3.3, these three parts correspond to executing the current action (which might it-

self be a subtask), completing the rest of the current subtask (so far is similar to the MAXQ

decomposition), and all actions outside the current subtask.

1The projected value function and value function are the same for a primitive action.

49

V(i,s)

V(a,s)

Part 1
Part 2

C(i,s,a)

s ’

Execution of Subtask i

s s
I T

s

Execution of Action a

Figure 3.2. This figure shows the two-part decomposition for V̂ (i, s), the projected value
function of subtask i for the shaded state s. Each circle is a state of the SMDP visited by
the agent. Subtask i is initiated at state sI and is terminated at state sT . The projected value
function V̂ (i, s) is broken into two parts: Part 1) the projected value function of subtask a
for state s, and Part 2) the completion function, the expected discounted cumulative reward
of completing subtask i after executing action a in state s.

50

x=(,s)ω

V(a,s)

Part 1
Part 2

C(i,s,a)

Part 3

Execution of Subtask i

I T
xx x ’

V(i,x)

Execution of Action a

Figure 3.3. This figure shows the three-part decomposition for V (i, x), the hierarchical
value function of subtask i for the shaded state x = (ω, s). Each circle is a state of the
SMDP visited by the agent. Subtask i is initiated at state xI and is terminated at state xT .
The hierarchical value function V (i, x) is broken into three parts: Part 1) the projected
value function of subtask a for state s, Part 2) the completion function, the expected dis-
counted cumulative reward of completing subtask i after executing action a in state s, and
Part 3) the sum of all rewards after termination of subtask i.

51

CHAPTER 4

HIERARCHICAL AVERAGE REWARD REINFORCEMENT
LEARNING

As we described in Chapter 2, the average-reward formulation has been shown to be

more appropriate for a wide class of continuing tasks than more well-studied discounted

framework. A primary goal of continuing tasks, including manufacturing, scheduling,

queuing, and inventory control, is to find a gain-optimal policy that maximizes (mini-

mizes) the long-run average reward (cost) over time. Although average reward reinforce-

ment learning (RL) has been studied using both the discrete-time MDP model (Schwartz,

1993; Mahadevan, 1996; Tadepalli and Ok, 1996; Marbach, 1998; Van-Roy, 1998) as well

as the continuous-time SMDP model (Mahadevan et al., 1997b; Wang and Mahadevan,

1999), prior work has been limited to flat policy representations.

In this chapter,1 we extend previous work on hierarchical reinforcement learning (HRL)

to the average reward SMDP framework and present discrete-time and continuous-time hi-

erarchically optimal average reward RL (HO-AR) algorithms. In these algorithms, we

assume that the overall task (the root of the hierarchy) is continuing. The aim of these

algorithms is to find a hierarchical policy within the space of policies defined by the hi-

erarchical decomposition that maximizes the gain of the root task (global gain). We use

two experimental testbeds to study the empirical performance of the proposed algorithms.

The first problem is a small automated guided vehicle (AGV) scheduling task. The second

1Most of the work presented in this chapter first appeared in 1) Ghavamzadeh and Mahadevan (2001),
“Continuous-Time Hierarchical Reinforcement Learning,” Proceedings of the Eighteenth International Con-
ference on Machine Learning", pp. 186-193, and 2) Ghavamzadeh and Mahadevan (2002), “Hierarchically
Optimal Average Reward Reinforcement Learning,” Proceedings of the Nineteenth International Conference
on Machine Learning", pp. 195-202.

52

problem is a relatively large AGV scheduling task. We model this task using both discrete-

time and continuous-time models and compare the performance of our proposed algorithms

with other HRL methods and Q-learning.

The rest of this chapter is organized as follows. In Section 4.1, we describe a hierarchi-

cal average reward RL formulation which is used to develop the algorithms in this chapter.

In Section 4.2, we introduce discrete-time and continuous-time hierarchically optimal av-

erage reward RL (HO-AR) algorithms. These algorithms attempt to find a hierarchical

policy with the highest global gain. We demonstrate the type of the optimality that the

HO-AR algorithms converge to as well as their performance and speed compared to other

algorithms in Section 4.3. Finally, Section 4.4 summarizes the chapter and discusses some

directions for future work.

4.1 Formulation

Given the basic concepts of the average reward MDP and the average reward SMDP

models described in Sections 2.2.3 and 2.3.2, and the fundamental principles of HRL and

the HRL framework illustrated in Chapter 3, we can now proceed to describe a hierarchical

average reward RL formulation. In this chapter, we consider continuing HRL problems for

which the following assumptions hold.

Assumption 4.1 (Continuing Root Task) The root of the hierarchy is a continuing task,

i.e., the root task goes on continually without termination. �

Assumption 4.2 (Root Task Recurrence) There exists a state s∗0 ∈ S0 such that, for every

hierarchical policy µ and for every state s ∈ S0, we have2

2Notice that the root task is represented as subtask M0 in the HRL framework described in Chapter 3. So
every component of root task has index 0.

53

|S0|
∑

n=1

F µ
0 (s∗0, n|s) > 0

where F µ
0 is the multi-step abstract transition probability function of root under the hierar-

chical policy µ described in Section 3.2, and |S0| is the number of states in the state space

of root. �

Assumption 4.2 is equivalent to assuming that the underlying Markov chain for every pol-

icy of the root task has a single recurrent class and the state s∗0 is a recurrent state. Under

this assumption, the balance equations for hierarchical policy µ

|S0|
∑

s=1

F µ
0 (s′, 1|s)π0(s) = π0(s

′), ∀s′ ∈ S0 , s′ 6= s

|S0|
∑

s=1

π0(s) = 1

have a unique solution πµ
0 = (πµ

0 (1), . . . , πµ
0 (|S0|)). We refer to πµ

0 as the steady state

probability vector of the Markov chain with abstract transition probability F µ
0 (s′, 1|s), and

to πµ
0 (s) as the steady state probability of being in state s.

If Assumption 4.2 holds, the gain gµ is well defined for every hierarchical policy µ and

does not depend on the initial state. We call gµ the global gain under the hierarchical policy

µ and it is defined as

gµ =
∑

s∈S0

πµ
0 (s)r(s, µ(s))

We are interested in finding a hierarchical control µ∗ which maximizes the global gain, i.e.,

gµ∗ ≥ gµ, for all µ (4.1)

We refer to a hierarchical policy µ∗ which satisfies Equation 4.1 as a hierarchically optimal

average reward policy, and to gµ∗

as the optimal average reward or the optimal gain.

54

In the next section, we introduce discrete-time and continuous-time hierarchically op-

timal average reward RL (HO-AR) algorithms to find a hierarchical policy with maxi-

mum global gain.

4.2 Hierarchically Optimal Average Reward RL Algorithm

In this section, we consider problems for which Assumptions 4.1 and 4.2 (Continuing

Root Task and Root Task Recurrence) hold, i.e., the average reward for root (overall prob-

lem) is well defined for every hierarchical policy and does not depend on the initial state.

Since we are interested in finding the hierarchical optimal policy, we include the contents

of the Task-Stack as a part of the state space of the problem. We also replace value and

action-value functions in the hierarchical model of Chapter 3 with average-adjusted value

and average-adjusted action-value functions described in Sections 2.2.3 and 2.3.2.

The hierarchical average-adjusted value function H for hierarchical policy µ and sub-

task i, denoted Hµ(i, x), is the average adjusted sum of rewards earned by following hier-

archical policy µ starting in state x = (ω, s) until i terminates, plus the expected average-

adjusted reward outside subtask i.

Hµ(i, x) = lim
N→∞

E

{

N−1
∑

k=0

[r(xk, ak)− gµ] |x0 = x, µ

}

(4.2)

where gµ is the gain of the root task (global gain) under hierarchical policy µ.

Now let us suppose that the first action chosen by µ is executed for a number of primitive

steps N1 and terminates in state x1 = (ω, s1) according to multi-step transition probability

P
µ
i (x1, N1|x, µi(x)) and after that subtask i itself executes for N2 steps at the level of subtask

i (N2 is the number of actions taken by subtask i, not the number of primitive actions)

and terminates in state x2 = (ω, s2) according to multi-step abstract transition probability

F µ
i (x2, N2|x1). We can write Equation 4.2 in the form of a Bellman equation as

55

Hµ(i, x) = rµ(x, µi(x))− gµy
µ
i (x, µi(x)) +

(4.3)

∑

N1,s1∈Si

P
µ
i (x1, N1|x, µi(x))



Ĥµ(i, x1) +
∑

N2,s2∈Si

F
µ
i (x2, N2|x1)H

µ(Parent(i), (ω ↗ i, s2))





where Ĥµ(i, .) is the projected average-adjusted value function of hierarchical policy µ on

subtask i, yµ
i (x, µi(x)) is the expected number of time steps until the next decision epoch

after taking subtask µi(x) in state x and following hierarchical policy µ afterward, and

ω ↗ i is the content of the Task-Stack after popping subtask i off. Notice that Ĥ does

not contain the rewards outside the current subtask and should be distinguished from the

hierarchical average adjusted value function H which includes the sum of rewards outside

the current subtask.

Since rµ(x, µi(x)) is the expected reward between two decision epochs of subtask i,

given that the system occupies state x at the first decision epoch and decision maker chooses

action µi(x), we have

rµ(x, µi(x)) = V̂ µ(µi(x), (µi(x)↘ ω, s)) = Ĥµ(µi(x), (µi(x)↘ ω, s)) + gµy
µ
i (x, µi(x))

where µi(x) ↘ ω is the content of the Task-Stack after pushing subtask µi(x) onto it. By

replacing rµ(x, µi(x)) from the above expression, Equation 4.3 can be written as

Hµ(i, x) = Ĥµ(µi(x), (µi(x)↘ ω, s)) +

(4.4)

∑

N1,s1∈Si

P
µ
i (x1, N1|x, µi(x))



Ĥµ(i, x1) +
∑

N2,s2∈Si

F
µ
i (x2, N2|x1)H

µ(Parent(i), (ω ↗ i, s2))





We can restate Equation 4.4 for hierarchical average-adjusted action-value function as

56

Lµ(i, x, a) = Ĥµ(a, (a↘ ω, s)) +
∑

N1,s1∈Si

P
µ
i (x1, N1|x, a)



Ĥµ(i, x1) +
∑

N2,s2∈Si

F
µ
i (x2, N2|x1)L

µ(Parent(i), (ω ↗ i, s2), µparent(i)(ω ↗ i, s2))





and we can re-express the definition of Ĥ as

Ĥµ(i, s) =











L̂µ(i, s, µi(s)) if i is a composite action,
∑

s′ P (s′|s, i)[r(s, i)− gµ] if i is a primitive action.
(4.5)

where L̂ is the projected average-adjusted action-value function.

The above formulas are hierarchical average-adjusted value and action-value function

decompositions. They can be used to obtain update equations for Ĥ , L̂ and L in this av-

erage reward framework. Pseudo-code for the hierarchically optimal average reward RL

(HO-AR) algorithm is shown in Algorithm 1. In this algorithm, primitive subtasks update

only their projected average-adjusted value functions3 Ĥ (line 5), while non-primitive sub-

tasks update both their projected average-adjusted action-value functions L̂ (line 17) and

hierarchical average-adjusted action-value functions L (line 18). We store only one global

gain g and update it after each non-random primitive action (line 7). In update formulas

at lines 17 and 18, the projected average-adjusted value function Ĥ(a, (a ↘ ω, s)) is the

reward of executing action a in state (ω, s) under subtask i and is recursively calculated by

subtask a and its descendants using Equation 4.5.

This algorithm can be easily extended to continuous-time by changing the update for-

mulas for Ĥ and g in lines 5 and 7 as

Ĥt+1(i, x)←−(1− αt)Ĥt(i, x) + αt [k(s, i) + r(s′|s, i)τ(s′|s, i)− gtτ(s′|s, i)]

3Hierarchical and projected value functions are the same for primitive subtasks.

57

Algorithm 1 Discrete-time hierarchically optimal average reward RL (HO-AR) algorithm.
1: Function HO-AR(Task i, State x = (ω, s))
2: let Seq ={}be the sequence of states visited while executing i
3: if i is a primitive action then
4: execute action i in state x, observe state x′ = (ω, s′) and reward r(s, i)
5: Ĥt+1(i, x)←− (1− αt)Ĥt(i, x) + αt[r(s, i)− gt]
6: if i and all its ancestors are non-random actions then
7: update the global average reward gt+1 = rt+1

nt+1
= rt+r(s,i)

nt+1

8: end if
9: push state x1 = (ω ↗ i, s) into the beginning of Seq

10: else
11: while i has not terminated do
12: choose action (subtask) a according to the current exploration policy µi(x)
13: let ChildSeq=HO-AR(a, (a ↘ ω, s)), where ChildSeq is the sequence of states

visited while executing subtask a
14: observe result state x′ = (ω, s′)
15: let a∗ = arg maxa′∈Ai(s′)

Lt(i, x
′, a′)

16: for each x = (ω, s) in ChildSeq from the beginning do
17: L̂t+1(i, x, a)← (1−αt)L̂t(i, x, a)+αt[Ĥt(a, (a↘ ω, s))+L̂t(i, x

′, a∗)]
18: Lt+1(i, x, a)← (1−αt)Lt(i, x, a)+αt[Ĥt(a, (a↘ ω, s))+Lt(i, x

′, a∗)]
19: replace state x = (ω, s) with x1 = (ω ↗ i, s) in the ChildSeq
20: end for
21: append ChildSeq onto the front of Seq
22: x = x′

23: end while
24: end if
25: return Seq
26: end HO-AR

58

gt+1 =
rt+1

tt+1

=
rt + k(s, i) + r(s′|s, i)τ(s′|s, i)

tt + τ(s′|s, i)

where τ(s′|s, i) is the time elapsing between states s and s′, k(s, i) is the fixed reward of

taking action i in state s, and r(s′|s, i) is the reward rate for the time that the natural process

remains in state s′ between decision epochs.

The HO-AR algorithm described above finds a hierarchical policy that has the highest

global gain among all policies consistent with the given hierarchy. However, there might

exist a subtask where its policy must be locally suboptimal so that the overall policy be-

comes optimal. Recursive optimality is a kind of local optimality in which the policy at

each node is optimal given the policies of its children. The reason to seek recursive opti-

mality rather than hierarchical optimality is that recursive optimality makes it possible to

solve each subtask without reference to the context in which it is executed. This leaves open

the question of what local optimality criterion should be used for each subtask except root

in the recursively optimal average reward RL setting. One approach pursued by Seri and

Tadepalli (2002) is to optimize subtasks using their expected total average-adjusted reward

with respect to the global gain. Seri and Tadepalli introduced a model-based algorithm

called Hierarchical H-Learning (HH-Learning). For every subtask, this algorithm learns

the action model and maximizes the expected total average-adjusted reward with respect

to the global gain at each state. In their approach, the projected average-adjusted value

functions with respect to the global gain satisfy the following Bellman equations:

Ĥµ(i, s) =























r(s, i)− gµ if i is a primitive action,

0 if s is a goal state for subtask i,

maxa∈Ai(s)[Ĥ
µ(a, s) +

∑

N,s′∈Si
P µ

i (s′, N |s, a)Ĥµ(i, s′)] otherwise.

(4.6)

The first term of the last part of Equation 4.6, Ĥµ(a, s), denotes the expected total average-

adjusted reward during the execution of subtask a (the projected average adjusted value

59

function of subtask a), and the second term denotes the expected total average-adjusted

reward from then on until the completion of subtask i (the completion function of subtask

i after execution of subtask a). Since the expected average-adjusted reward after execu-

tion of subtask i is not a component of the average-adjusted value function, this approach

does not necessarily allow for hierarchical optimality, as we will show in the experiments

of Section 4.3. Moreover, the policy learned for each subtask using this approach is not

context free, since each node maximizes its average-adjusted reward with respect to the

global gain. However, this method finds the hierarchically gain-optimal policy when the

result distribution invariance condition holds (Seri and Tadepalli, 2002).

4.3 Experimental Results

The goal of this section is to demonstrate the efficacy of the algorithms proposed in

this chapter. We show the type of the optimality that they converge to as well as their per-

formance and speed comparing to other algorithms. We conduct two sets of experiments

in this section. In Section 4.3.1, we apply four HRL algorithms to a simple discrete-time

AGV scheduling problem. The advantage of using this simple domain is that it clearly

demonstrates the difference between hierarchical and recursive optimal policies and dif-

ferences between the optimality criteria achieved by these algorithms. Then we will turn

to a more complex AGV scheduling task in Section 4.3.2 to demonstrate the performance

and speed of the proposed algorithms. In Section 4.3.2, we model an AGV scheduling task

as discrete and continuous time problems and apply two HRL algorithms as well as a flat

average reward RL algorithm to both models.

4.3.1 A Small AGV Scheduling Problem

In this section, we apply the discrete-time hierarchically optimal average reward RL

(HO-AR) algorithm described in Section 4.2, and HH-Learning, the algorithm proposed

by Seri and Tadepalli (2002) to a small AGV scheduling task. We also test MAXQ-Q, the

60

recursively optimal discounted reward HRL algorithm proposed by Dietterich (2000), and a

hierarchically optimal discounted reward RL algorithm (HO-DR) on this task. The HO-DR

algorithm is an extension of MAXQ-Q using the three-part value function decomposition

proposed by Andre and Russell (2002) and described in Chapter 3. These experimental re-

sults clearly demonstrate the difference between hierarchical and recursive optimal policies

and between the optimality criteria achieved by these algorithms.

A small AGV domain is depicted in Figure 4.1. In this domain there are two machines

M1 and M2 that produce parts to be delivered to corresponding destination stations G1

and G2. Since machines and destination stations are in two different rooms, the AGV has

to pass one of the two doors D1 and D2 every time it goes from one room to another.

Part 1 is more important than part 2, therefore the AGV gets a reward of 20 when part 1

is delivered to destination G1 and a reward of 1 when part 2 is delivered to destination

G2. The AGV receives a reward of -1 for all other actions. This task is deterministic and

the state variables are AGV location and AGV status (empty, carry part 1 or carry part 2),

which is total of 26 × 3 = 78 states. In all experiments, we use the task graph shown in

Figure 4.1 and set the discount factor to 0.99 for discounted reward algorithms. We tried

several discounting factors and 0.99 yielded the best performance. Using this task graph,

hierarchical and recursive optimal policies are different. Since delivering part 1 has more

reward than part 2, the hierarchically optimal policy is one in which the AGV always serves

machine M1. In the recursively optimal policy, the AGV switches from serving machine

M1 to serving machine M2 and vice versa. In this policy, the AGV goes to machine M1,

picks up a part of type 1, goes to goal G1 via door D1, drops the part there, then passes

through door D2, goes to machine M2, picks up a part of type 2, goes to goal G2 via door

D2 and then switches again to machine M1 and so on so forth.

Among the algorithms we applied to this task, the hierarchically optimal average reward

RL (HO-AR) and the hierarchically optimal discounted reward RL (HO-DR) algorithms

find the hierarchically optimal policy, where the other algorithms only learn the recursively

61

G2M1

M2

D2

D1

G1

Go to Machine Go to Door

Root

Go to Goal

North West South EastNorth NorthWest South SouthEast

M1: Machine 1 M2: Machine 2 D1: Door 1 D2: Door 2 G1: Goal 1 G2: Goal 2

Figure 4.1. A small AGV scheduling task and its associated task graph.

optimal policy. Figure 4.2 demonstrates the throughput of the system for the above algo-

rithms. In this figure, the throughput of the system is the number of parts deposited at the

destination stations weighted by their reward (part1×20+part2×1) in 10, 000 time steps.

Each experiment was conducted ten times and the results were averaged.

0 2 4 6 8 10 12

x 10
4

2000

4000

6000

8000

10000

12000

Time step since start of simulation

T
h

ro
u

g
h

p
u

t
o

f
th

e
sy

st
em

HO−AR
HH−Learning
MAXQ−Q
HO−DR

Figure 4.2. This plot shows that HO-DR and HO-AR algorithms (the two curves at the top)
learn the hierarchically optimal policy while MAXQ-Q and HH-Learning (the two curves
at the bottom) only find the recursively optimal policy for the small AGV scheduling task.

62

4.3.2 AGV Scheduling Problem (Discrete and Continuous Time Models)

In this section, we describe two sets of experiments on an AGV scheduling problem

shown in Figure 4.3. M1 to M3 are workstations in this environment. Parts of type i have

to be carried to the drop-off station at workstation i (Di), and the assembled parts brought

back from pick-up stations of workstations (Pi’s) to the warehouse. The AGV travel is

unidirectional as the arrows show. We model this AGV scheduling task using both discrete-

time and continuous-time models and demonstrate the performance and speed of two HRL

algorithms: hierarchically optimal average reward RL (HO-AR) and hierarchically optimal

discounted reward RL (HO-DR) as well as a non-hierarchical average reward algorithm in

this problem. In both experiments, we use the task graph for the AGV scheduling task

shown in Figure 4.4 and discount factors 0.9 and 0.95 for discounted reward algorithms.

Using discount factor 0.95 yielded better performance in both experiments.

The state of the environment consists of the number of parts in the pick-up and drop-off

stations of each machine and whether the warehouse contains parts of each of the three

types. In addition, agent keeps track of its own location and status as a part of its state

space. Thus in the flat case, state space consists of 33 locations, 6 buffers of size 2, 7

possible states of the AGV (carrying Part1, . . . , carrying Assembly1, . . . , empty), and 2

values for each part in the warehouse, i.e., 33 × 36 × 7 × 23 = 1, 347, 192 states. State

abstraction helps in reducing the state space considerably. Only the relevant state variables

are used while storing the value functions in each node of the task graph. For example, for

the Navigation subtask, only the location state variable is relevant and this subtask can be

learned with only 33 values. Hence for each of the high-level subtasks DM1, . . . , DM3,

the number of relevant states would be 33×7×3×2 = 1, 386, and for each of the high-level

subtasks DA1, . . . , DA3, the number of relevant states would be 33 × 7 × 3 = 693. This

state abstraction gives us a compact way of representing the value functions and speeds up

the algorithm.

63

P1

P2

P3

D1

D2

D3
Load

Unload

Assemblies

Parts

M1M3

M2

MachineM:

D:

P:

Drop off Buffer

Pick up Buffer

Warehouse

Figure 4.3. An AGV scheduling task. An AGV agent (not shown) carries raw materials
and finished parts between machines and warehouse.

NavPick iNavPut i

NavPut i : Navigation to Dropoff Station i

: Navigation to Pickup Station iNavPick i

DM i : Deliver Material to Station i

DA : Deliver Assembly from Station i i

NavLoad : Navigation to Loading Deck

NavUnload : Navigation to Unload Deck

Root

DA2DA1

Nav

Forward RightLeft

.

.NavLoad Load Put Pick Unload

DM1 DM2

NavUnload

Figure 4.4. Task graph for the AGV scheduling task.

64

The discrete-time experimental results were generated with the following model param-

eters. The inter-arrival time for parts at the warehouse is uniformly distributed with a mean

of 12 time steps and variance of 2 time steps. The percentage of Part1, Part2, and Part3 in

the part arrival process are 40, 35, and 25 respectively. The time required for assembling the

various parts are Poisson random variables with means 6, 10, and 12 time steps for Part1,

Part2, and Part3 respectively, and variance 2 time steps. Table 4.1 shows the parameters of

the discrete-time model.

Parameter Distribution Mean (steps) Variance (steps)
Assembly Time for Part1 Poisson 6 2
Assembly Time for Part2 Poisson 10 2
Assembly Time for Part3 Poisson 12 2

Inter-Arrival Time for Parts Uniform 12 2

Table 4.1. Parameters of the Discrete-Time Model

The continuous-time experimental results were generated with the following model

parameters. The time required for execution of each primitive action is a normal random

variable with mean 10 seconds and variance 2 seconds. The inter-arrival time for parts

at the warehouse is uniformly distributed with a mean of 100 seconds and variance of 20

seconds. The percentage of Part1, Part2, and Part3 in the part arrival process are 40, 35,

and 25 respectively. The time required for assembling the various parts are normal random

variables with means 100, 120, and 180 seconds for Part1, Part2, and Part3 respectively,

and variance 20 seconds. Table 4.2 contains the parameters of the continuous-time model.

In both cases, each experiment was conducted five times and the results were averaged.

Parameter Type of Distribution Mean (sec) Variance (sec)
Execution Time for Primitive Actions Normal 10 2

Assembly Time for Part1 Normal 100 20
Assembly Time for Part2 Normal 120 20
Assembly Time for Part3 Normal 180 20

Inter-Arrival Time for Parts Uniform 100 20

Table 4.2. Parameters of the Continuous-Time Model

65

Figure 4.5 compares the proposed discrete-time hierarchically optimal average reward

RL (HO-AR) algorithm described in Section 4.2 with the discrete-time discounted reward

hierarchically optimal (HO-DR) algorithm. The graph shows the improved performance

of the proposed discrete-time average reward algorithm HO-AR. This figure also shows

that the HO-AR algorithm converges faster to the same throughput as the non-hierarchical

average reward algorithm. The non-hierarchical average reward algorithm used in this ex-

periment is relative value iteration (RVI) Q-learning (Abounadi et al., 2001). The difference

in convergence speed between flat and hierarchical algorithms becomes more significant as

we increase the number of states.

0 0.5 1 1.5 2

x 10
6

1500

2000

2500

3000

3500

4000

4500

Time step since start of simulation

T
h

ro
u

g
h

p
u

t
o

f
th

e
sy

st
em

Discrete−time HO−AR
Discrete−time HO−DR
Discrete−time Non−Hierarchical AR (RVI Q−Learning)

Figure 4.5. This plot shows that the discrete-time HO-AR algorithm performs better than
the discounted reward HO-DR algorithm on the AGV scheduling task. It also demonstrates
the faster convergence of the HO-AR algorithm comparing to RVI Q-learning, the non-
hierarchical average reward algorithm.

Figure 4.6 compares the continuous-time hierarchically optimal average reward RL

(HO-AR) algorithm proposed in Section 4.2 with the continuous-time hierarchically opti-

mal discounted reward RL (HO-DR) algorithm. The graph shows that the average reward

HO-AR algorithm converges to the same performance as the discounted reward HO-DR

66

algorithm. This figure also shows that the HO-AR algorithm converges faster to the same

throughput as the non-hierarchical average reward algorithm. The non-hierarchical aver-

age reward algorithm used in this experiment is a continuous-time version of the relative

value iteration (RVI) Q-learning (Abounadi et al., 2001). The difference in convergence

speed between flat and hierarchical algorithms becomes more significant as we increase

the number of states.

0 0.5 1 1.5 2 2.5 3

x 10
6

0

50

100

150

200

250

300

350

400

Time step since start of simulation (sec)

T
h

ro
u

g
h

p
u

t
o

f
th

e
sy

st
em

Continuous−time HO−AR
Continuous−time HO−DR
Continuous−time Non−Hierarchical AR (RVI Q−Learning)

Figure 4.6. This plot shows that the continuous-time HO-AR converges to the same perfor-
mance as the discounted reward HO-DR on the AGV scheduling task. It also demonstrates
the faster convergence of the HO-AR algorithm comparing to RVI Q-learning, the flat av-
erage reward algorithm.

These results are consistent with the hypothesis that the average reward framework

is superior to the discounted framework for learning a gain-optimal policy, since average

reward methods do not need careful tuning of the discount factor to find gain-optimal poli-

cies.

67

4.4 Conclusions and Future Work

This chapter presents new discrete-time and continuous-time hierarchically optimal av-

erage reward RL (HO-AR) algorithms applicable to continuing tasks, including manufac-

turing, scheduling, queuing, and inventory control. These algorithms are based on the

average-reward SMDP model, which has been shown to be more appropriate for a wide

class of continuing tasks than the better studied discounted SMDP model. Hierarchically

optimal average reward RL algorithms aim to find a hierarchical policy within the space

of policies defined by the hierarchical decomposition that maximizes the global gain (the

gain of the root task in the hierarchy). The effectiveness of the proposed algorithms were

tested using two AGV scheduling tasks.

There are a number of directions for future work. An immediate question that arises

is proving the asymptotic convergence of the algorithms to hierarchically optimal poli-

cies. These results should provide some theoretical validity to the proposed algorithms, in

addition to their empirical effectiveness demonstrated in this chapter. Studying recursive

optimality in hierarchical average reward model is an interesting problem that needs to be

addressed. The goal in a recursively optimal average reward RL framework is to optimize

the policy at each subtask given the policies of its children, in addition to maximizing the

gain of the root task given the policy of the other subtasks in the hierarchy. It makes it

possible to optimize each subtask without reference to the context in which it is executed.

Since all subtasks in the hierarchy except root are episodic, the question here is what local

optimality criterion should be used by them. It is also obvious that many other manufactur-

ing and robotics problems can benefit from these algorithms.

68

CHAPTER 5

HIERARCHICAL POLICY GRADIENT REINFORCEMENT
LEARNING

We illustrated value function based (VFB) and policy gradient based (PGB) solutions

for MDPs in Section 2.2.4. As we described in that section, there are only weak theoretical

guarantees on the performance of the value function based reinforcement learning (VFRL)

methods on problems with large discrete or continuous state spaces. We also mentioned

that policy gradient based reinforcement learning (PGRL) algorithms have received recent

attention as a means to solve problems with continuous state spaces. They have also shown

better performance when states are hidden. However, they are usually slower than VFRL

methods. A possible solution is to incorporate prior knowledge and decompose the high-

dimensional task into a collection of modules with smaller state spaces and learn these

modules in a way to solve the overall problem. Hierarchical VFRL methods (Parr, 1998;

Sutton et al., 1999; Dietterich, 2000; Andre and Russell, 2001) have been developed using

this approach, as an attempt to scale RL to large state spaces.

In this chapter,1 we propose a family of hierarchical policy gradient reinforcement

learning (HPGRL) algorithms for scaling PGRL methods to problems with continuous (or

large discrete) state and/or action spaces. In HPGRL, non-primitive subtasks are defined

as PGRL problems. Later in this chapter, we accelerate learning in HPGRL algorithms

by formulating high-level subtasks, which usually involve smaller state and finite action

spaces, as VFRL problems, and low-level subtasks with infinite state and/or action spaces

1Most of the work presented in this chapter first appeared in Ghavamzadeh and Mahadevan (2003), “Hi-
erarchical policy gradient algorithms,” Proceedings of the Twentieth International Conference on Machine
Learning, pp. 226-233.

69

as PGRL problems. This idea is similar to the idea used by Morimoto and Doya (2001) to

learn stand-up behavior in a three-link, two-joint robot. We call this family of algorithms

hierarchical hybrid algorithms.

The rest of this chapter is organized as follows. In Section 5.1, we describe how we

define each subtask in the hierarchy as a PGRL problem. In sections 5.2, we introduce a

family of HPGRL algorithms and compare the performance of this family of algorithms

with a hierarchical VFRL algorithm and a flat RL algorithm in a simple taxi-fuel prob-

lem. In Section 5.3, we propose a family of hierarchical hybrid algorithms to accelerate

learning in HPGRL algorithms. We illustrate this family of algorithms and demonstrate its

performance using a continuous state and action ship steering problem. Finally, Section

5.4 summarizes the chapter and discusses some directions for future work.

5.1 Policy Gradient Formulation

In this section, we demonstrate how to define a subtask in a hierarchical task decompo-

sition as a PGRL problem. We formulate a subtask in terms of a parameterized family of

policies and a performance function. We then define a method to estimate the gradient of

the performance function and a routine to update the policy parameters using this gradient.

Our focus in this chapter is on episodic problems, so we assume that the overall task (root

of the hierarchy) is episodic.

5.1.1 Policy Formulation

Each subtask i is defined using a set of randomized stationary policies µi(θi) parame-

terized in terms of a vector θi ∈ IRK . The term µi(a|s; θi) denotes the probability of taking

action a in state s under the policy corresponding to θi. These parameterized policies for

individual subtasks define a set of parameterized hierarchical policies µ(θ), where θ is the

vector of all subtasks’ parameters. For every subtask i in the hierarchy, we make the fol-

lowing assumption about its set of parameterized policies µi(θi).

70

Assumption 5.1: For every state s ∈ Si and every action a ∈ Ai, µi(a|s; θi) as a function

of θi, is bounded and has bounded first and second derivatives. Furthermore, ∇µi(a|s;θi)
µi(a|s;θi)

is

bounded, differentiable and has bounded first derivatives. �

In HRL methods, we typically assume that every time a subtask i is called, it starts at

one of its initial states (∈ Ii) and terminates at one of its terminal states (∈ Ti) after a finite

number of steps. Therefore, we make the following assumption for every subtask i in the

hierarchy. Under this assumption, each subtask can be considered an episodic problem and

each instantiation of a subtask can be considered an episode.

Assumption 5.2 (Subtask Termination): There exists a dummy state s∗i ∈ Si such that,

for every action a ∈ Ai and every terminal state sTi
, we have

ri(sTi
, a) = 0 and Pi(s

∗
i , 1|sTi

, a) = 1

ri(s
∗
i , a) = 0 and Pi(s

∗
i , 1|s∗i , a) = 1

and for all hierarchical stationary policies µ(θ) and non-terminal states s ∈ Si, we have

F
µ(θ)
i (s∗i , 1|s) = 0

and finally for all states s ∈ Si, we have

F
µ(θ)
i (s∗i , N |s) > 0

where F
µ(θ)
i is the multi-step abstract transition probability function of subtask i under the

hierarchical policy µ(θ) described in Section 3.2, and N = |Si| is the number of states in

71

the state space of subtask i. �

Under this assumption, all terminal states of subtask i transit with probability 1 and

reward 0 to the dummy state s∗i and stay there until the next instantiation of subtask i as

shown in Figure 5.1. This is a dummy transition and does not add another time-step to the

cycle of subtask i.

.

.

.
.
.
.

. . .

. . . r=0 , p=1

Initial States

r=0 , p=1

r=0 , p=1

Terminal States Ti i

s*i

I

Figure 5.1. This figure shows how we model a subtask as an episodic problem under
Assumption 5.2.

Under this model, we define a new MDP MIi
for subtask i with abstract transition

probabilities

F
µ(θ)
Ii

(s′, 1|s) =











F
µ(θ)
i (s′, 1|s) s 6= s∗i

Ii(s
′) s = s∗i

and rewards rIi
(s, a; θ) = ri(s, a; θ), where Ii(s) is the probability that subtask i starts at

state s.

Let Fµ(θ)
Ii

be the set of all abstract transition probability functions F
µ(θ)
Ii

. We have the

following result for subtask i.

Lemma 5.1: Let Assumptions 5.1 and 5.2 hold. Then for every F
µ(θ)
Ii

∈ Fµ(θ)
Ii

and ev-

ery state s ∈ Si, we have
∑N

n=1 F
µ(θ)
Ii

(s∗i , n|s) > 0, where N = |Si|. �

72

Lemma 5.1 is equivalent to assuming that the MDP MIi
is recurrent, i.e., the underly-

ing Markov chain for every policy µ(θ) in this MDP has a single recurrent class and the

state s∗i is a recurrent state. In this case, the balance equations

N
∑

s=1

F
µ(θ)
Ii

(s′, 1|s)πi(s) = πi(s
′), ∀s′ ∈ Si , s′ 6= s

N
∑

s=1

πi(s) = 1

have a unique solution π
µ(θ)
Ii

. We refer to π
µ(θ)
Ii

as the steady state probability vector

of the Markov chain with transition probability F
µ(θ)
Ii

, and to π
µ(θ)
Ii

(s) as the steady state

probability of being in state s.

5.1.2 Performance Measure Definition and Optimization

We define weighted reward-to-go, χi(θ), as the performance measure of subtask i

under the parameterized hierarchical policy µ(θ), and for which Assumption 5.2 holds, as

χi(θ) =
∑

s∈Si

Ii(s)Ji(s; θ)

where Ji(s; θ) is the reward-to-go of subtask i in state s under hierarchical policy µ(θ),

Ji(s; θ) = E

[

T−1
∑

k=0

ri(sk, ak)|s0 = s; θ

]

where T = min{k > 0|sk = s∗i } is the first future time that state s∗i is visited.2

In order to obtain an expression for the gradient ∇χi(θ), we use MDP MIi
defined in

Section 5.1.1. Using Lemma 5.1, MDP MIi
is recurrent. For MDP MIi

, let π
µ(θ)
Ii

(s) be the

2With the definition of absorbing state s∗i in our model (see Figure 5.1), the reward-to-go of subtask i in
state s, Ji(s;θ), is the same as undiscounted projected value function of subtask i in state s.

73

steady state probability distribution of being in state s at subtask i and let EIi
[T |θ] be the

mean recurrence time of subtask i, i.e., EIi
[T |θ] = EIi

[T |s0 = s∗i ,θ], under hierarchical

policy µ(θ). We also define J̃i(s, a; θ)3 as

J̃i(s, a; θ) = EIi

[

T−1
∑

k=0

rIi
(sk, ak)|s0 = s, a0 = a; θ

]

Using recurrent MDP MIi
, we can derive the following proposition which gives an expres-

sion for the gradient of the weighted reward-to-go χi(θ) with respect to θ.

Proposition 5.1: If Assumptions 5.1 and 5.2 hold

∇χi(θ) = EIi
[T |θ]

∑

s∈Si

∑

a∈Ai

π
µ(θ)
Ii

(s)∇µi(a|s; θi)J̃i(s, a; θ)

�

This proposition is similar to Proposition 1 on page 35 of Marbach (1998).

The expression for the gradient in Proposition 5.1 can be estimated over a renewal

cycle (cycle between consecutive visits to recurrent state s∗i) as

Fm,i(θ) =

tm+1−1
∑

n=tm

Ri(sn, an; θ)
∇µi(sn, an; θi)

µi(sn, an; θi)
(5.1)

where tm is the time of the mth visit at the recurrent state s∗i and Ri(sn, an; θ) =
∑tm+1−1

k=n ri(sn, an; θ)

is an estimate of J̃i(sn, an; θ).

3With the definition of absorbing state in Figure 5.1,J̃i is the undiscounted projected action-value function
of subtask i.

74

From Equation 5.1, we obtain the following procedure to update the parameter vector

of subtask i, θi, along the approximate gradient direction at every time step.

zk+1,i =











0 sk = s∗i ,

zk,i +
∇µi(ak|sk;θk,i)

µi(ak|sk;θk,i)
otherwise.

(5.2)

θk+1,i = θk,i + αk,iRi(sk, ak; θk)zk+1,i

where αk,i is the step size parameter for subtask i and satisfies the following assumptions.

Assumption 5.3: αk,i’s are deterministic, nonnegative and satisfy
∑∞

k=1 αk,i = ∞ and
∑∞

k=1 α2
k,i <∞. �

Assumption 5.4: αk,i’s are non-increasing and there exists a positive integer p and a posi-

tive scalar A such that
∑n+t

k=n(αn,i − αk,i) ≤ Atpα2
n,i for all positive integers n and t. �

We have the following convergence result for the iterative procedure in Equation 5.2 to

update the parameters.

Proposition 5.2: Let Assumptions 5.1, 5.2, 5.3, and 5.4 hold, and let θk be the sequence

of parameter vectors generated by Equation 5.2. Then, the estimation of performance mea-

sure χi(θk) converges and limk→∞∇χi(θk) = 0 with probability 1. �

This proposition is similar to Propositions 14 on page 59 of Marbach (1998).

Equation 5.2 provides an unbiased estimate of ∇χi(θ). For systems involving a large

state space, the interval between visits to state s∗i can be large. As a consequence, the

estimate of ∇χi(θ) might have a large variance. Several methods have been proposed

to reduce the variance in this estimation and yield faster convergence (Marbach, 1998;

75

Baxter and Bartlett, 2001). For instance, we can use a discount factor γ in the reward-to-

go estimation. However, these methods introduce a bias into the estimate of ∇χi(θ). For

these methods, we can derive a modified version of Equation 5.2 to incrementally update

the parameter vector along the approximate gradient direction.

5.2 Hierarchical Policy Gradient Algorithms

After decomposing the overall task to a set of subtasks as described in Chapter 3, and

formulating each subtask in the hierarchy as an episodic PGRL problem as illustrated in

Section 5.1, we can use the update Equation 5.2 and derive an HPGRL algorithm to maxi-

mize the weighted reward-to-go for every subtask in the hierarchy. Algorithm 2 shows the

pseudo code for this algorithm.

Algorithm 2 A hierarchical policy gradient algorithm that maximizes the weighted reward-
to-go for the subtasks in the hierarchy.

1: Function HPGRL(Task i, State s)
2: RR = 0
3: if i is a primitive action then
4: execute action i in state s, observe state s′ and reward r(s, i)
5: return r(s, i)
6: else
7: while i has not terminated (s 6= s∗i) do
8: choose action a using policy µi(s; θi)
9: R=HPG(Task a, State s)

10: observe result state s′ and internal reward r̃i(s, a)
11: if s′ = s∗i then
12: zk+1,i = 0
13: else
14: zk+1,i = zk,i +

∇µi(a|s;θk,i)

µi(a|s;θk,i)

15: end if
16: θk+1,i = θk,i + αk,i [R + r̃i(s, a)] zk+1,i

17: RR = RR + R
18: s = s′

19: end while
20: end if
21: return RR
22: end HPGRL

76

The term r̃i(s, a) in lines 10 and 16 of the algorithm is the internal reward which can be

used only inside each subtask to speed up its local learning and does not propagate to the

upper levels in the hierarchy. Lines 11− 16 can be replaced with any other policy gradient

algorithm to optimize weighted reward-to-go, such as those presented in Marbach (1998)

or Baxter and Bartlett (2001). Thus, Algorithm 2 describes a family of HPGRL algorithms

to maximize the weighted reward-to-go for every subtask in the hierarchy.

The above formulation of each subtask brings the following limitations for the learned

policy: 1) Parameterized representation of a policy limits the policy search to a set which

is typically smaller than the set of all possible policies. 2) Gradient-based policy search

methods find a solution which is locally, rather than globally, optimal. Thus, in general, the

family of algorithms described above converges to a recursively local optimal policy. If

the policy learned for every subtask in the hierarchy coincides with the best policies, then

these algorithms converge to a recursively optimal policy.

5.2.1 Taxi-Fuel Problem

In this section, we apply the HPGRL algorithm to the taxi-fuel problem introduced in

Dietterich (1998), and compare its performance with MAXQ-Q, a value-based hierarchical

RL algorithm (Dietterich, 2000), and flat Q-learning.

A 5-by-5 grid world inhabited by a taxi is shown in Figure 5.2. There are four stations,

marked as B(lue), G(reen), R(ed) and Y(ellow). The task is episodic. In each episode, the

taxi starts in a randomly chosen location and with a randomly chosen amount of fuel rang-

ing from 5 to 12 units. There is a passenger at one of the four stations (chosen randomly),

and that passenger wishes to be transported to one of the other three stations (also chosen

randomly). The taxi must go to the passenger’s location, pick up the passenger, go to its

destination location and drop off the passenger there. The episode ends when the passenger

is deposited at its destination station or taxi goes out of fuel. There are 8, 750 possible states

and 7 primitive actions in the domain, Pickup, Dropoff, Fillup, and four navigation actions

77

(each of these consumes one unit of fuel). Each action is deterministic. There is a reward

of−1 for each action and an additional reward of 20 for successfully delivering the passen-

ger. There is a reward of −10 if the taxi attempts to execute the Dropoff or Pickup actions

illegally, and a reward of −20 if the fuel level falls below zero. The system performance

is measured in terms of the average reward per step which is equivalent to maximizing the

total reward per episode in this task. Each experiment was conducted ten times and the

results averaged.

T : Taxi
B : Blue Station
G : Green Station
R : Red Station
Y : Yellow Station
F : Gas Station

0 1 2 3 4

0

1

2

3

4 G

B

R

T

Y

F

Figure 5.2. The taxi-fuel problem.

Figure 5.3 compares the performance of HPGRL, MAXQ-Q and flat Q-learning algo-

rithms on the taxi-fuel problem.4 The hierarchical policy gradient algorithm used in this

experiment is the one shown in Algorithm 2, with one policy parameter for each state-

action pair (s, a). The graph shows that MAXQ-Q converges faster than HPGRL and flat

Q-learning, and HPGRL is slightly faster than flat Q-learning.

As we expected, the HPGRL algorithm converges to the same performance as MAXQ-

Q. However, it is much slower than its value function based counterpart. The performance

of HPGRL can be improved by better policy formulation and using more sophisticated

policy gradient algorithms for each subtask. The slow convergence of HPGRL algorithms

4Both HPGRL and MAXQ-Q utilize the hierarchical task decomposition used in Dietterich (1998).

78

0 1 2 3 4 5

x 10
4

−7

−6

−5

−4

−3

−2

−1

0

1

2

Number of Trials

R
ew

ar
d

 p
er

 S
te

p

MAXQ−Q
Flat Q−Learning
Hierarchical Policy Gradient

Figure 5.3. This figure compares the performance of the HPGRL algorithm proposed in
this section with MAXQ-Q and flat Q-learning algorithms on the taxi-fuel problem.

motivates us to use both VFRL and PGRL methods in a hierarchy. We address this by

introducing hierarchical hybrid algorithms in the next section.

5.3 Hierarchical Hybrid Algorithms

Despite the methods proposed to reduce the variance of gradient estimators in PGRL

algorithms, these algorithms are still slower than VFRL methods as shown in the simple

taxi-fuel experiment in Section 5.2.1. We accelerate learning of HPGRL algorithms by

formulating those subtasks with smaller state spaces and finite action spaces usually located

at the high levels of the hierarchy as VFRL problems, and those with large state spaces

and/or infinite action spaces usually located at the low levels of the hierarchy as PGRL

problems. This formulation can benefit from the faster convergence of VFRL methods

and the power of PGRL algorithms in domains with infinite state and/or action spaces at

the same time. We call this family of algorithms, hierarchical hybrid algorithms and

illustrate them using a ship steering task.

79

Figure 5.4 shows a ship steering task (Miller et al., 1990). A ship starts at a randomly

chosen position, orientation, and turning rate. Its goal is to be maneuvered at a constant

speed through a gate placed at a fixed position.

.

θ

(x, y)

Gate

0
0 x 1 km

1 km

y

Figure 5.4. The ship steering task.

Equations 5.3 gives the motion equations of the ship, where T = 5 is the time constant

of convergence to desired turning rate, V = 3 m/sec is the constant speed of the ship,

and ∆ = 0.2 sec is the sampling interval. There is a time lag between changes in the

desired turning rate and the actual rate, modeling the effects of a real ship’s inertia and the

resistance of the water.

x[t + 1] = x[t] + ∆V sinθ[t]

y[t + 1] = y[t] + ∆V cosθ[t]

θ[t + 1] = θ[t] + ∆θ̇[t]

θ̇[t + 1] = θ̇[t] + ∆(r[t]− θ̇[t])/T

(5.3)

At each time t, the state of the ship is given by its position x[t] and y[t], orientation

θ[t] and actual turning rate θ̇[t]. The action is the desired turning rate of the ship r[t]. All

four state variables and also the action are continuous and their range is shown in Table

80

State x 0 to 1000 meters
y 0 to 1000 meters
θ -180 to 180 degrees
θ̇ -15 to 15 degrees/sec

Action r -15 to 15 degrees/sec

Table 5.1. Range of state and action variables for the ship steering task.

5.1. The ship steering problem is episodic. In each episode, the goal is learning to generate

sequences of actions that steer the center of the ship through the gate in the minimum

amount of time. The sides of the gate are placed at coordinates (350,400) and (450,400).

If the ship moves out of bound (x < 0 or x > 1000 or y < 0 or y > 1000), the episode

terminates and is considered as a failure.

We applied both a flat PGRL algorithm and an actor-critic algorithm (Konda, 2002) to

this task without achieving a good performance in a reasonable amount of time. Figure 5.7

shows that after learning for 50, 000 episodes, these algorithms are able to control the ship

to successfully pass through the gate only 60 percent of time. We believe this occurred

due to two reasons, which make this problem hard to learn. First, since the ship cannot

turn faster than 15 degrees/sec, all state variables change only by a small amount at each

control interval. Thus, we need a high resolution discretization of the state space in order

to accurately model state transitions, which requires a large number of parameters for the

function approximator and makes the problem intractable. Second, there is a time lag

between changes in the desired turning rate r and the actual turning rate θ̇, ship’s position

x, y and orientation θ, which requires the controller to deal with long delays.

However, we successfully applied a flat policy gradient algorithm to simplified versions

of this problem shown in Figure 5.5, when x and y change from 0 to 150 instead of 0 to

1000, the ship always starts at a fixed position with randomly chosen orientation and turn-

ing rate, and the goal is to reach to a neighborhood of a pre-defined point. It indicates that

this high-dimensional non-linear control problem can be learned using an appropriate hier-

archical decomposition. Using this prior knowledge, we decompose the problem into two

81

levels using the task graph shown in Figure 5.6. At the high-level, the agent learns to select

among four diagonal and four horizontal/vertical subtasks. At the low-level, each low-level

subtask learns a sequence of turning rates to achieve its own goal. We use symmetry and

map eight subtasks located below root to only two subtasks at the low-level, one associated

with four diagonal subtasks and one associated with four horizontal/vertical subtasks as

shown in Figure 5.6. We call them diagonal subtask and horizontal/vertical subtask.

150 m

0
0 x

y

150 m

Initial Position (40,75)

Goal (140,75)

0
0 x

y

150 m

150 m

Initial Position (40,40)

Goal (140,140)

Figure 5.5. This figure shows two simplified versions of the ship steering task used as
low-level subtasks in the hierarchical decomposition of the ship steering problem.

Continuous Action
Turning Rate r

−15 < r < 15

Continuous Action
Turning Rate r

−15 < r < 15

x = x + 100
y = y + 100

x = x + 100
y = y − 100

x = x − 100
y = y + 100

x = x − 100
y = y − 100

x = x + 100
y = y

x = x
y = y − 100

x = x − 100
y = y

x = x
y = y + 100

Root

Diagonal Subtasks Subtasks
Horizontal / Vertical

Diagonal
Subtask Subtask

Primitive Action

Horizontal / Vertical

Figure 5.6. A task graph for the ship steering problem.

82

The flat PGRL algorithm used in this section uses Equation 5.2 and CMAC function

approximator with 9 four-dimensional tilings, dividing the space into 20× 20× 36× 5 =

72, 000 tiles each. The actor-critic algorithm also uses the above function approximator for

its actor, and 9 five dimensional tilings of size 5× 5× 36× 5× 30 = 135, 000 tiles for its

critic. The fifth dimension of critic’s tilings is for the continuous action.

In the hierarchical hybrid algorithm, we decompose the task using the task graph in

Figure 5.6. At the high-level, the learner explores in a low-dimensional sub-space of the

original high-dimensional state space. The state variables are only the coordinates of the

ship x and y with the full range from 0 to 1000. The actions are four diagonal and four

horizontal/vertical subtasks similar to those subtasks shown in Figure 5.5. The state space

is coarsely discretized into 400 states. We use the value-based Q(λ) algorithm with ε-greedy

action selection and replacing traces to learn a sequence of diagonal and horizontal/vertical

subtasks to achieve the goal of the entire task (passing through the gate). Each episode

ends when the ship passes through the gate or moves out of bound. Then the new episode

starts with the ship in a randomly chosen position, orientation, and turning rate. In this

algorithm, λ is set to 0.9, learning rate to 0.1, and ε starts with 0.1 remains unchanged until

the performances of low-level subtasks reach to a certain level and then is decreased by a

factor of 1.01 every 50 episodes.

At the low-level, the learner explores local areas of the high-dimensional state space

without discretization. When the high-level learner selects one of the low-level subtasks,

the low-level subtask takes control and executes the following steps as shown in Figure 5.6.

1) Maps the ship to a new coordinate system in which the ship is in position (40, 40) for the

diagonal subtask and (40, 75) for the horizontal/vertical subtask. 2) Sets the low-level goal

to position (140, 140) for the diagonal subtask and (140, 75) for the horizontal/vertical sub-

task. 3) Sets the low-level boundaries to 0 ≤ x , y ≤ 150. 4) Generates primitive actions

until either the ship reaches to a neighborhood of the low-level goal, a circle with radius 10

around the low-level goal (success), or moves out of the low-level bounds (failure).

83

The two low-level subtasks use all four state variables, however the range of coordina-

tion variables x and y is 0 to 150 instead of 0 to 1000. Their action variable is the desired

turning rate of the ship, which is a continuous variable with range −15 to 15 degrees/sec.

The control interval is 0.6 sec (three times the sampling interval ∆ = 0.2 sec). They use

the PGRL algorithm in lines 11-16 of Algorithm 2 to update their parameters. In addition,

they use a CMAC function approximator with 9 four dimensional tilings, dividing the space

into 5 × 5 × 36 × 5 = 4, 500 tiles each. One parameter w is defined for each tile and the

parameterized policy is a Gaussian:

µ(s, a,W) =
1√
2π

e−
A
2 , A =

∑N

i=0 wiφi
∑N

i=0 φi

where N = 9 × 4, 500 = 40, 500 is the total number of tiles and φi is 1 if state s falls in

tile i and 0 otherwise. The actual action is generated after mapping the value chosen by the

Gaussian policy to the range from −15 to 15 degrees/sec using a sigmoid function.

In addition to the original reward of −1 per step, we define internal rewards 100 and

−100 for low-level success and failure, and a reward according to the distance of the current

ship orientation θ to the angle between the current position and low-level goal θ̂ given by

G = exp

(

−‖θ − θ̂‖2
30× 30

)

− 1

where 30 degree gives the width of the reward function. When a low-level subtask termi-

nates, the only reward that propagates to the high-level is the summation of all −1 rewards

per step. In addition to reward received from low-level, high-level uses a reward 100 upon

successfully passing through the gate.

We trained the system for 50, 000 episodes. In each episode, the high-level learner

(controller located at root) selects a low-level subtask, and the selected low-level subtask

is executed until it successfully terminates (ship reaches the low-level goal) or it fails (ship

84

goes out of the low-level bounds). Then control returns to the high-level subtask (root)

again. The following results are averaged over five simulation runs.

Figure 5.7 compares the performance of the hierarchical hybrid algorithm with flat

PGRL and actor-critic algorithms in terms of the number of successful trials in 1000

episodes. As this figure shows, despite the high resolution function approximators used

in both flat algorithms, their performance is worse than hierarchical hybrid algorithm.

Moreover, their computation time per step is also much more than the hierarchical hybrid

algorithm, due to the large number of parameters to be learned.

0 1 2 3 4 5

x 10
4

0

200

400

600

800

1000

1200

Number of Episodes

N
u

m
b

er
 o

f
S

u
cc

es
s

in
 1

00
0

E
p

is
o

d
es

Hierarchical Hybrid Algorithm
Flat Policy Gradient Algorithm
Flat Actor−Critic Algorithm

Figure 5.7. This figure shows the performance of hierarchical hybrid, flat PGRL and
actor-critic algorithms in terms of the number of successful trials in 1000 episodes.

Figure 5.8 demonstrates the performance of the hierarchical hybrid algorithm in terms

of the average number of low-level subtask calls. This figure shows that after learning, the

learner executes about 4 low-level subtasks (diagonal or horizontal/vertical subtasks) per

episode.

Figure 5.9 compares the performance of hierarchical hybrid, flat PGRL and actor-critic

algorithms in terms of the average number of steps to goal (averaged over 1000 episodes).

85

0 1 2 3 4 5

x 10
4

0

2

4

6

8

10

12

Number of Episodes

N
um

be
r

of
 L

ow
−L

ev
el

 S
ub

ta
sk

 C
al

ls
 in

 1
00

0
E

pi
so

de
s

Number of Low−Level Subtask Used

Figure 5.8. This figure shows the performance of the hierarchical hybrid algorithm in
terms of the number of low-level subtask calls.

This figure shows that after learning, it takes about 220 primitive actions (turn actions) for

the hierarchical hybrid learner to pass through the gate. Although flat algorithms should

show a better performance than the hierarchical hybrid algorithm in terms of the average

number of steps to goal (flat algorithms should find the global optimal policy, whereas

the hierarchical hybrid algorithm converges just to a recursive optimal solution), Figure

5.9 shows that their performance after 50, 000 episodes is still worse than the hierarchical

hybrid algorithm.

Figures 5.10 and 5.11 show the performance of the diagonal and horizontal/vertical

subtasks in terms of the number of success out of 1000 executions respectively.

Finally, Figure 5.12 demonstrates the learned policy for two sample initial configu-

rations of the ship shown with big circles. The upper configuration is x = 700 , y =

700 , θ = 100 , θ̇ = 3.65 and the lower one is x = 750 , y = 180 , θ = 80 , θ̇ = 7.9.

The low-level subtasks chosen by the agent at the high-level are shown by small circles in

this figure.

86

0 1 2 3 4 5

x 10
4

200

250

300

350

400

450

Number of Episodes

N
u

m
b

er
 o

f
P

ri
m

it
iv

e
S

te
p

s
in

 1
00

0
E

p
is

o
d

es Hierarchical Hybrid Algorithm
Flat Policy Gradient Algorithm
Flat Actor−Critic Algorithm

Figure 5.9. This figure shows the performance of hierarchical hybrid, flat PGRL and
actor-critic algorithms in terms of the number of steps to pass through the gate.

0 1 2 3 4 5 6 7 8

x 10
4

0

100

200

300

400

500

600

700

800

900

1000

Number of Episodes

N
u

m
b

er
 o

f
S

u
cc

es
s

in
 1

00
0

E
p

is
o

d
es

Diagonal Subtask Performance

Figure 5.10. This figure shows the performance of the diagonal subtask in terms of the
number of successful trials in 1000 episodes.

87

0 1 2 3 4 5 6 7 8 9

x 10
4

0

100

200

300

400

500

600

700

800

900

1000

Number of Episodes

N
u

m
b

er
 o

f
S

u
cc

es
s

in
 1

00
0

E
p

is
o

d
es

Horizontal/Vertical Subtask Performance

Figure 5.11. This figure shows the performance of the horizontal/vertical subtask in terms
of the number of successful trials in 1000 episodes.

Figure 5.12. This figure shows the learned policy for two initial configurations of the ship.

88

5.4 Conclusions and Future Work

In this chapter, we described a family of hierarchical policy gradient RL (HPGRL) al-

gorithms for learning in domains with continuous state and/or action spaces. We compared

the performance of this family of algorithms with a hierarchical VFRL algorithm and a

flat RL algorithm in a simple taxi-fuel problem. The results demonstrate that the HPGRL

algorithm converges slower than the hierarchical VFRL algorithm. To accelerate learning

in HPGRL algorithms, we proposed a family of hierarchical hybrid algorithms in which

subtasks located at high level(s) of the hierarchy are formulated as VFRL, and subtasks lo-

cated at low level(s) of the hierarchy are defined as PGRL problems. We use a continuous

state and action ship steering task to illustrate this family of algorithms and to demonstrate

their performance.

The algorithms proposed in this chapter are based on the assumption that the overall

task (root of the hierarchy) is episodic. One direction for future work is to reformulate the

algorithms presented in this chapter for the case when the overall task is continuing. In

this case, the root task is formulated as a continuing problem with the average reward as

its performance function. Since the policy learned at root involves policies of its children,

the type of optimality achieved at root depends on how we formulate other subtasks in

the hierarchy. Different notions of optimality in hierarchical average reward presented in

Chapter 4 can be used to develop new HPGRL algorithms for continuing problems.

Although the proposed algorithms give us the ability to deal with continuous state

spaces, they are not still appropriate to efficiently control real-world problems in which

the speed of learning is crucial. The results of ship steering task indicate that in order to

apply the proposed algorithms to real-world domains, more powerful PGRL algorithms are

needed to be developed — PGRL algorithms that need a small number of samples to learn

a good policy, and are not computationally expensive.

89

CHAPTER 6

HIERARCHICAL MULTI-AGENT REINFORCEMENT
LEARNING

In this chapter,1 we investigate the use of hierarchical reinforcement learning (HRL)

to speed up the acquisition of cooperative multi-agent tasks. Our approach to learning in

cooperative multi-agent domains differs from all the approaches discussed in Section 2.5 in

one key respect, namely the use of hierarchy to speed up multi-agent reinforcement learn-

ing. The key idea underlying our approach is that coordination skills are learned much more

efficiently if the agents have a hierarchical representation of the task structure.2 We first in-

troduce a hierarchical multi-agent RL framework. In this framework, we assume agents are

cooperative and each agent is given an initial hierarchical decomposition of the overall task.

Moreover, agents are homogeneous, i.e., use the same hierarchical task decomposition.

However, learning is decentralized, with each agent learning three interrelated skills: how

to perform subtasks, which order to do them in, and how to coordinate with other agents.

The use of hierarchy speeds up learning in multi-agent domains by making it possible to

learn coordination skills at the level of subtasks instead of primitive actions. We define co-

operative subtasks to be those subtasks in which coordination among agents significantly

improves the performance of the overall task. Agents cooperate with their teammates at

1Most of the work presented in this chapter first appeared in 1) Makar, Mahadevan and Ghavamzadeh
(2001), “Hierarchical multi-agent reinforcement learning,” Proceedings of the Fifth International Conference
on Autonomous Agents, pp. 246-253, and 2) Ghavamzadeh and Mahadevan (2004), “Learning to Com-
municate and Act using Hierarchical Reinforcement Learning,” Proceedings of the Third International Joint
Conference on Autonomous Agents and Multi-Agent Systems, pp. 1114-1121. A longer version of this work
has also been submitted to the Journal of Autonomous Agents and Multi-Agent Systems.

2Algorithms for learning task-level coordination have also been developed in non-MDP approaches, see
Sugawara and Lesser (1998).

90

cooperative subtasks and ignore them while performing non-cooperative subtasks. Those

levels of the hierarchy which include cooperative subtasks are called cooperation levels.

Since high-level coordination allows for increased cooperation skills as agents do not get

confused by low-level details, we usually define cooperative subtasks at high level(s) of the

hierarchy. The proposed hierarchical approach allows agents to learn coordination faster

by sharing information at the level of cooperative subtasks, rather than attempting to learn

coordination at the level of primitive actions. We initially assume that communication is

free and propose a hierarchical multi-agent RL algorithm called Cooperative HRL. In Sec-

tion 6.4, we use a large four-agent AGV scheduling problem as the experimental testbed

and compare the performance of the Cooperative HRL algorithm with selfish HRL, as well

as single-agent HRL and standard Q-learning algorithms. We also show that the Cooper-

ative HRL outperforms widely used industrial heuristics, such as “first come first serve”,

“highest queue first” and “nearest station first” in this problem.

Later in this chapter, we address the issue of rational communication among autonomous

agents, which is important when communication is costly. The goal is for agents to learn

both action and communication policies that together optimize the task given the com-

munication cost. We extend the Cooperative HRL algorithm to include communication

decisions and propose a cooperative multi-agent HRL algorithm called COM-Cooperative

HRL. In this algorithm, we add a communication level to the hierarchical decomposition

of the problem below each cooperation level. Before making a decision at a cooperative

subtask, agents decide if it is worthwhile to perform a communication action. A communi-

cation action has a certain cost and provides each agent at a certain cooperation level with

the actions selected by the other agents at the same level. We demonstrate the efficacy of

the COM-Cooperative HRL algorithm as well as the relation between the communication

cost and the learned communication policy using a multi-agent taxi problem.

The rest of this chapter is organized as follows. In Section 6.1, we introduce the multi-

agent SMDP model, which is an extension of the SMDP model to cooperative multi-agent

91

domains. Section 6.2 describes the hierarchical multi-agent RL framework which is used

in the algorithms proposed in this chapter. In Sections 6.3 and 6.4, we introduce the Co-

operative HRL algorithm and present the experimental results of using this algorithm in a

four-agent AGV scheduling problem. In Section 6.5, we illustrate how to incorporate com-

munication decisions in Cooperative HRL algorithm. In this section, after a brief introduc-

tion of communication among agents in Section 6.5.1, we illustrate the COM-Cooperative

HRL algorithm in Section 6.5.2. Section 6.6 presents experimental results of using the

COM-Cooperative HRL algorithm in a multi-agent taxi domain. Finally, Section 6.7 sum-

marizes the chapter and discusses some directions for future work. The multi-agent version

of the robot trash collection task described in Chapter 3 will serve as our example domain

throughout this chapter. The multi-agent trash collection task and its task graph are shown

in Figure 6.1.

A1, A2 : Agents
T1 : Location of the first trash can
T2 : Location of the second trash can
Dump : Location to deposit all trash

Find WallAlign with WallFollow Wall

Navigate to T1 Pick PutNavigate to Dump Navigate to T2

Root

Children of
the top−level
Cooperative
Subtask (Root)

U =
root

Room3

Corridor

Dump

T2

T1

Room1

Room2

A2

A1

Cooperative SubtaskCooperation Level

Collect Trash at T1 Collect Trash at T2

Figure 6.1. A multi-agent trash collection task and its associated task graph.

6.1 Multi-Agent SMDP Model

In this section, we extend the SMDP model described in Section 2.3 to multi-agent do-

mains when a team of agents controls the process, and introduce the multi-agent SMDP

(MSMDP) model. We assume agents are cooperative, i.e., maximize the same utility over

an extended period of time. The individual actions of agents interact in that the effect of

92

one agent’s action may depend on the actions taken by the others. When a group of agents

perform temporally extended actions, these actions may not terminate at the same time.

Therefore, unlike the multi-agent extension of MDP, the MMDP model (Boutilier, 1999),

the multi-agent extension of SMDP requires extending the notion of a decision making

event.

Definition 6.1: An MSMDP consists of six components (α,S,A,P ,R, I, τ), which are

defined as follows:

The set α is a finite collection of n agents, with each agent j ∈ α having a finite set Aj of in-

dividual actions. An element ~a = 〈a1, . . . , an〉 of the joint-action spaceA =
∏n

j=1 Aj rep-

resents the concurrent execution of actions aj by each agent j, j = 1, . . . , n. The compo-

nents S ,R, I , and P are as in an SMDP, the set of states of the system being controlled, the

reward function mapping S → IR, the initial state distribution I : S → [0, 1], and the state

and action dependent multi-step transition probability functionP : S×IN×S×A → [0, 1].

The term P (s′, N |s,~a) denotes the probability that joint-action ~a will cause the system to

transition from state s to state s′ in N time steps. Since the components of a joint-action

are temporally extended actions, they may not terminate at the same time. Therefore, the

multi-step transition probability function P depends on how we define decision epochs and

as a result, depends on the termination scheme τ . Three termination strategies τany, τall

and τcontinue for temporally extended joint-actions were introduced and analyzed in Ro-

hanimanesh and Mahadevan (2003). In τany termination scheme, the next decision epoch

is when the first action within the joint-action currently being executed terminates, where

the rest of the actions that did not terminate are interrupted. When an agent completes an

action (finishes collect trash at T1 by putting trash in Dump), all other agents interrupt

their actions, the next decision epoch occurs and a new joint-action is selected (agent A1

chooses to collect trash at T2 and agent A2 decides to collect trash at T1). In τall termina-

93

tion scheme, the next decision epoch is the earliest time at which all the actions within the

joint-action currently being executed have terminated. When an agent completes an action,

it waits (takes the idle action) until all the other agents finish their current actions. Then,

next decision epoch occurs and agents choose next joint-action together. In both these ter-

mination strategies, all agents make decision at every decision epoch. τcontinue termination

scheme is similar to τany in the sense that the next decision epoch is when the first action

within the joint-action currently being executed terminates. However, the other agents are

not interrupted and only terminated agents select new actions. In this termination strategy,

only a subset of agents choose action at each decision epoch. When an agent completes an

action, next decision epoch occurs only for that agent and it selects its next action given the

actions being performed by the other agents. �

The three termination strategies described above are the most common, but not the only

termination schemes in cooperative multi-agent activities. A wide range of termination

strategies can be defined based on them. Of course, all these strategies are not appro-

priate for any multi-agent task. We categorize termination strategies as synchronous and

asynchronous. In synchronous schemes, such as τany and τall, all agents make a decision

at every decision epoch and therefore we need a centralized mechanism to synchronize

agents at decision epochs. In asynchronous strategies, such as τcontinue, only a subset of

agents make decision at each decision epoch. In this case, there is no need for a centralized

mechanism to synchronize agents and decision making can take place in a decentralized

fashion. Since our goal is to design decentralized multi-agent RL algorithms, we use the

τcontinue termination scheme for joint-action selection in the hierarchical multi-agent model

and algorithms presented in this chapter.

94

6.2 A Hierarchical Multi-Agent Reinforcement Learning Framework

In our hierarchical multi-agent framework, we assume that there are n agents in the

environment, cooperating with each other to accomplish a task. The designer of the system

uses her domain knowledge to recursively decompose the overall task into a collection of

subtasks that she believes are important for solving the problem. We assume that agents

are homogeneous, i.e., all agents are given the same task hierarchy.3 At each level of the

hierarchy, the designer of the system defines cooperative subtasks to be those subtasks

in which coordination among agents significantly increases the performance of the overall

task. The set of all cooperative subtasks at a certain level of the hierarchy is called the co-

operation set of that level. Each level of the hierarchy with non-empty cooperation set is

called a cooperation level. The union of the children of the lth level cooperative subtasks is

represented by Ul. Since coordination at high levels allows for increased cooperation skills

as agents do not get confused by low-level details, we usually define the cooperative sub-

tasks at the highest level(s) of the hierarchy. Agents actively coordinate only while making

decision at cooperative subtasks and are ignorant about the other agents at non-cooperative

subtasks. Therefore, cooperative subtasks are configured to model joint-action values. In

the trash collection problem, the root task is defined as a cooperative subtask, therefore the

top-level of the hierarchy is a cooperation level. As a result, root is the only member of the

cooperation set at the first level and U1 consists of all subtasks located at the second level

of the hierarchy, U1 = {collect trash at T1 , collect trash at T2} (see Figure 6.1). As

it is clear in the trash collection task, it is more effective that each agent learns high-level

coordination knowledge (what is the utility of agent A2 collects trash from trash can T1 if

agent A1 is collecting trash from trash can T2, and so on), rather than it learns its response

to low-level primitive actions of other agents (for instance what agent A2 should do if agent

A1 aligns with wall). As a result, we define single-agent policies for non-cooperative sub-

3Studying the heterogeneous case where agents are given dissimilar decompositions of the overall task
would be more challenging and beyond the scope of this dissertation.

95

tasks and joint policies for cooperative subtasks.

Definition 6.2: Under a hierarchical policy µ, each non-cooperative subtask i can be mod-

eled by an SMDP consists of components (Si, Ai, P
µ
i , Ri, Ii). �

Definition 6.3: Under a hierarchical policy µ, each cooperative subtask i located at the

lth level of the hierarchy can be modeled by an MSMDP as follows:

α is the set of n agents in the team. We assume that agents have only local state infor-

mation and ignore the states of the other agents. Therefore, the state space Si is defined as

the single-agent state space Si (not joint-state space). This is certainly an approximation

but greatly simplifies the underlying multi-agent RL problem. This approximation is based

on the fact that an agent can get a rough idea of what state the other agents might be in

just by knowing about the high-level actions being performed by them. The action space

is joint and is defined as Ai = Ai × (Ul)
n−1, where Ul =

⋃m

k=1 Ak is the union of the

action sets of all the lth level cooperative subtasks, and m is the cardinality of the lth level

cooperation set. For the cooperative subtask root in the trash collection problem, the set of

agents is α = {A1, A2} and its joint-action space, Aroot, is specified as the cross product

of its action set, Aroot, and U1, Aroot = Aroot × U1. Finally, since we are interested in

decentralized control, we use the τcontinue termination strategy. Therefore, when an agent

terminates a subtask, the next decision epoch occurs only for that agent and it selects its

next action given the information about the other agents. �

This cooperative multi-agent approach has the following pros and cons:

Pros

• Using HRL scales learning to problems with large state spaces by using the task

structure to restrict the space of policies.

96

• Cooperation among agents is faster and more efficient as agents learn joint-action

values only at cooperative subtasks usually located at the high level(s) of abstraction

and do not get confused by low-level details.

• Since high-level subtasks can take a long time to complete, communication is needed

only fairly infrequently.

• The complexity of the problem is reduced by storing only the local state information

by each agent. It is due to the fact that each agent can get a rough idea of the state of

the other agents just by knowing about their high-level actions.

Cons

• The learned policy would not be optimal if agents need to coordinate at the subtasks

that have not been defined as cooperative. This issue will be addressed in one of the

AGV experiments in Section 6.4, by extending the joint-action model to the lower

levels of the hierarchy. Although this extension provides the cooperation required at

the lower levels, it increases the number of parameters to be learned and as a result

the complexity of the learning problem.

• If communication is costly, this method might not find an appropriate policy for the

problem. We address this issue in Section 6.5 by including communication decisions

in the model. If communication is cheap, agents learn to cooperate with each other,

and if communication is expensive, agents prefer to make decision only based on

their local view of the overall problem.

• Storing only local state information by agents causes sub-optimality in general. On

the other hand, including the state of other agents dramatically increases the com-

plexity of the learning problem and has its own inefficacy. We do not explicitly

address this problem in this dissertation.

97

The hierarchical value function decomposition described in Section 3.5 relies on a key

principle: the reward function for the parent task is the value function of the child task (see

Equations 3.4 and 3.5). Now, we show how the single-agent two-part value function de-

composition described in Section 3.5 can be modified to formulate the joint-value function

for cooperative subtasks. In our hierarchical multi-agent model, we configure cooperative

subtasks to store the joint completion function values.

Definition 6.4: The joint completion function for agent j, C j(i, s, a1, . . . , aj−1, aj+1, . . . ,

an, aj), is the expected discounted cumulative reward of completing cooperative subtask i

after taking subtask aj in state s while other agents performing subtasks ak,∀k ∈ {1, . . . , n}

, k 6= j. The reward is discounted back to the point in time where aj begins execution. �

In this definition, i is a cooperative subtask at level l of the hierarchy and 〈a1, . . . , an〉

is a joint-action in the action set of i. Each individual action in this joint-action belongs to

Ul. More precisely, the decomposition equations used for calculating the projected value

and action-value function for cooperative subtask i of agent j have the following form:

V̂ j(i, s, a1, . . . , aj−1, aj+1, . . . , an) = Q̂j(i, s, a1, . . . , aj−1, aj+1, . . . , an, µ
j
i (s))

(6.1)

Q̂j(i, s, a1, . . . , aj−1, aj+1, . . . , an , aj) = V̂ j(aj , s) + Cj(i, s, a1, . . . , aj−1, aj+1, . . . , an, aj)

One important point to note in this equation is that if subtask aj is itself a cooperative

subtask at level l + 1 of the hierarchy, its projected value function is defined as a joint pro-

jected value function V̂ j(aj, s, ã1, . . . , ãj−1, ãj+1, . . . , ãn), where ã1, . . . , ãj−1, ãj+1, . . .

, ãn belong to Ul+1. In this case, in order to calculate V̂ j(aj, s) for Equation 6.1, we

marginalize V̂ j(aj, s, ã1, . . . , ãj−1, ãj+1, . . . , ãn) over ã1, . . . , ãj−1, ãj+1, . . . , ãn.

98

We illustrate the above projected joint-value function decomposition using the trash

collection task. The two-part value function decomposition for agent A1 at root has the

following form:

Q̂1(root, s, collect trash at T 2 , collect trash at T1) = V̂ 1(collect trash at T1, s)

+C1(root, s, collect trash at T2, collect trash at T1)

which represents the value of agent A1 performing collect trash at T1 in the context of the

overall task (root), when agent A2 is executing collect trash at T2. Note that this value is

decomposed into the projected value of collect trash at T1 subtask (the V̂ term), and the

completion value of the remainder of the root task (the C term).

Given a hierarchical decomposition for any problem, we need to find the highest level

subtasks at which decomposition Equation 6.1 provides a sufficiently good approximation

of the true value. For the problems used in the experiments of this chapter, coordination

only at the highest level of the hierarchy is a good compromise between achieving a de-

sirable performance and reducing the number of joint-state-action values that need to be

learned. Hence, we define root as a cooperative subtask and thus the highest level of the hi-

erarchy as a cooperation level in these experiments. We extend coordination to lower levels

of the hierarchy by defining cooperative subtasks at levels below root in one of experiments

of Section 6.4.

6.3 A Hierarchical Multi-Agent Reinforcement Learning Algorithm

In this section, we use the hierarchical multi-agent RL framework described in Section

6.2 and present a hierarchical multi-agent RL algorithm, called Cooperative HRL. The

pseudo code for this algorithm is shown in Algorithm 3 at the end of this chapter. In the

Cooperative HRL, V̂ and C values can be learned through a standard TD-learning method

based on sample trajectories. One important point to note is that since non-primitive sub-

tasks are temporally extended in time, the update rules for C values used in this algorithm

99

are based on the SMDP model. In this algorithm, an agent starts from the root task and

chooses a subtask till it reaches a primitive action i. It executes primitive action i in state s,

receives reward r and observes resulting state s′, the value function V of primitive subtask4

i is updated using:

Vt+1(i, s) = (1− αt(i))Vt(i, s) + αt(i)r

where αt(i) is the learning rate for subtask i at time t. This parameter should be gradually

decreased to zero in time limit.

Whenever a subtask terminates, the C values are updated for all states visited during

the execution of that subtask. Assume an agent is executing a non-primitive subtask i and

is in state s, then while subtask i does not terminate, it chooses subtask a according to the

current exploration policy (softmax or ε-greedy with respect to µi(s)). If subtask a takes N

primitive steps and terminates in state s′, the corresponding C value is updated using

Ct+1(i, s, a) = (1− αt(i))Ct(i, s, a) + αt(i)γ
N [Ct(i, s

′, a∗) + V̂t(a
∗, s′)] (6.2)

where a∗ = arg maxa′∈Ai
[Ct(i, s

′, a′) + V̂t(a
′, s′)].

The V̂ values in Equation 6.2 are calculated using the following equation:

V̂ (i, s) =











maxa∈Ai
Q̂(i, s, a) if i is a non-primitive subtask,

∑

s′∈Si
P (s′|s, i)r(s, i) if i is a primitive action.

(6.3)

Similarly, when agent j completes execution of subtask aj ∈ Ai, the joint completion

function C of cooperative subtask i located at level l of the hierarchy is updated for all the

states visited during the execution of subtask aj using

4We do not use V̂ here, since projected and hierarchical value functions are the same for primitive actions.

100

C
j
t+1(i, s, a

1, . . . , aj−1, aj+1 , . . . , an, aj) = (1− α
j
t (i))C

j
t (i, s, a

1, . . . , aj−1, aj+1, . . . , an, aj)

+α
j
t (i)γ

N [Cj
t (i, s

′, â1, . . . , âj−1, âj+1, . . . , ân, a∗) + V̂
j
t (a∗, s′)]

(6.4)

where a∗ = arg maxa′∈Ai
[Cj

t (i, s
′, â1, . . . , âj−1, âj+1, . . . , ân, a′) + V̂ j

t (a′, s′)], a1, . . . ,

aj−1, aj+1, . . . , an and â1, . . . , âj−1, âj+1, . . . , ân are actions in Ul being performed by

the other agents when agent j is in states s and s′ respectively.

Equation 6.4 indicates that in addition to the states visited during the execution of a

subtask in Ul (s and s′), an agent must store the actions in Ul being performed by all the

other agents (a1, . . . , aj−1, aj+1, . . . , an in state s and â1, . . . , âj−1, âj+1, . . . , ân in

state s′). Sequence Seq is used for this purpose in Algorithm 3.

6.4 Experimental Results for the Cooperative HRL Algorithm

In this section, we demonstrate the performance of the Cooperative HRL algorithm

proposed in Section 6.3 using a four-agent AGV scheduling task. In this experiment, we

first provide a brief overview of the domain, then apply the Cooperative HRL algorithm

to the problem, and finally compare its performance with other algorithms, such as selfish

multi-agent HRL (where each agent acts independently and learns its own optimal policy),

single-agent HRL, and flat Q-Learning.

Figure 6.2 shows the layout of the AGV scheduling domain. M1 to M4 show work-

stations in this environment. Parts of type i have to be carried to the drop-off station at

workstation i, Di, and the assembled parts brought back from pick-up stations of work-

stations, Pi’s, to the warehouse. The AGV travel is unidirectional (as the arrows show).

This task is decomposed using the task graph in Figure 6.3. Each agent uses a copy of

this task graph. We define root as a cooperative subtask and the highest level of the hier-

archy as a cooperation level. Therefore, all subtasks at the second level of the hierarchy

101

(DM1, . . . , DM4, DA1, . . . , DA4) belong to set U1. Coordination skills among agents

are learned by using joint-action values at the highest level of the hierarchy as described in

Section 6.3.

Unload

40m20m

40m40m

Parts

Warehouse 60m

P4P3

D2

D3

60m

60m
Load

20m

P1P2

M: Machine
D: Drop off Station
P: Pick up Station

Assemblies

D1

D4

M2 M1

M4M3

Figure 6.2. A multi-agent AGV scheduling domain. There are four AGVs (not shown)
which carry raw materials and finished parts between machines and the warehouse.

The state of the environment consists of the number of parts in the pick-up and drop-

off stations of each machine, and whether the warehouse contains parts of each of the

four types. In addition, each agent keeps track of its own location and status as a part of its

state space. Thus, in the flat case, state space consists of 100 locations, 8 buffers of size 3, 9

possible states of AGV (carrying part1, . . . , carrying assembly1, . . . , empty), and 2 values

for each part in the warehouse, i.e., 100 × 48 × 9 × 24 ≈ 109 states. The state abstraction

helps in reducing the state space considerably. Only the relevant state variables are used

while storing the completion functions in each node of the task graph. For example, for

the navigation subtasks, only the location state variable is relevant, and this subtask can be

102

DM i : Deliver Material to Station i
DA i : Deliver Assembly from Station i
NavLoad : Navigation to Loading Deck
NavPut i : Navigation to Dropoff Station i
NavPick i : Navigation to Pickup Station i
NavUnload : Navigation to Unload Deck

Forward RightLeft

Root

DA2DA1.DM1 DM2

Cooperative SubtaskCooperation Level

 top−level Cooperative
 Subtask (Root)

The shaded subtasks are defined as cooperative
subtasks and this level as cooperation level

in the last experiment of this section

.Load Put Pick UnloadNavLoad NavUnloadNavPick iNavPut i

U = Children of the1

Figure 6.3. Task graph for the AGV scheduling task.

learned with 100 values. Hence, for each of the high-level subtask (DM1, . . . , DM4), the

number of relevant states would be 100× 9× 4× 2 = 7, 200, and for each of the high-level

subtask (DA1, . . . , DA4), the number of relevant states would be 100 × 9 × 4 = 3, 600.

This state abstraction gives us a compact way of representing the C and V functions, and

speeds up the algorithm.

In the experiments of this section, we assume that there are four agents (AGVs) in the

environment. The experimental results were generated with the following model parame-

ters. The inter-arrival time for parts at the warehouse is uniformly distributed with a mean

of 4 sec and variance of 1 sec. The percentage of Part1, Part2, Part3, and Part4 in the part

arrival process are 20, 28, 22, and 30 respectively. The time required for assembling the

various parts is normally distributed with means 15, 24, 24, and 30 sec for Part1, Part2,

Part3, and Part4 respectively, and variance 2 sec. The execution time of primitive actions

(right, left, forward, load, and unload) is normally distributed with mean 1000 µ-sec and

variance 50 µ-sec. The execution time for the idle action is also normally distributed with

mean 1 sec and variance 0.1 sec. Table 6.1 summarizes the values of the model parameters

used in the experiments of this section. In this task, each experiment was conducted five

times and the results were averaged.

103

Parameter Distribution Mean (sec) Variance (sec)
Idle Action Normal 1 0.1

Primitive Actions Normal 0.001 0.00005
Assembly Time for Part1 Normal 15 2
Assembly Time for Part2 Normal 24 2
Assembly Time for Part3 Normal 24 2
Assembly Time for Part4 Normal 30 2

Inter-Arrival Time for Parts Uniform 4 1

Table 6.1. Model parameters for the multi-agent AGV scheduling task.

Figure 6.4 shows the throughput of the system for the three algorithms, single-agent

HRL, selfish multi-agent HRL and Cooperative HRL. As seen in Figure 6.4, agents learn

a little faster initially in the selfish multi-agent method, but after some time the algorithm

results in sub-optimal performance. This is due to the fact that two or more agents select the

same action, but once the first agent completes the task, the other agents might have to wait

for a long time to complete the task, due to the constraints on the number of parts that can

be stored at a particular place. The system throughput achieved using the Cooperative HRL

method is higher than the single-agent HRL and the selfish multi-agent HRL algorithms.

This difference is even more significant in Figure 6.5, when the primitive actions have

longer execution time, almost 1
10th of the average assembly time (the mean execution time

of primitive actions is 2 sec).

Figure 6.6 shows results from an implementation of the single-agent flat Q-Learning

with the buffer capacity at each station set at 1. As can be seen from the plot, the flat algo-

rithm converges extremely slowly. The throughput at 70, 000 sec has gone up to only 0.07,

compared with 2.6 for the hierarchical single-agent case. Figure 6.7 compares the Cooper-

ative HRL algorithm with several well-known AGV scheduling rules, highest queue first,

nearest station first, and first come first serve, showing clearly the improved performance

of the HRL method.

So far in our experiments in the AGV domain, we only defined root as a cooperative

subtask. Now in our last experiment in this domain, in addition to root, we define navi-

104

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000 25000 30000 35000 40000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Cooperative HRL
Selfish Multiagent HRL

Single-agent HRL

Figure 6.4. This figure shows that the Cooperative HRL algorithm outperforms both the
selfish multi-agent HRL and the single-agent HRL algorithms when the AGV travel time
and load/unload time are very much less compared to the average assembly time.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50000 100000 150000 200000 250000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Cooperative HRL
Selfish Multiagent HRL

Figure 6.5. This figure compares the Cooperative HRL algorithm with the selfish multi-
agent HRL, when the AGV travel time and load/unload time are 1

10th of the average assem-
bly time.

105

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

10000 20000 30000 40000 50000 60000 70000 80000 90000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Flat Q-Learning

Figure 6.6. A flat Q-Learner learns the AGV domain extremely slowly showing the need
for using a hierarchical task structure.

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000 25000 30000 35000 40000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Cooperative HRL
First Come First Served Heuristic

Highest Queue First Heuristic
Nearest Station First Heuristic

Figure 6.7. This plot shows that the Cooperative HRL algorithm outperforms three well-
known widely used industrial heuristics for AGV scheduling.

106

gation subtasks at the third level of the hierarchy as cooperative subtasks. Therefore, the

third level of the hierarchy is also a cooperation level and its cooperation set contains all

navigation subtasks at that level (see Figure 6.3). We configure the root and the third level

navigation subtasks to represent joint-actions. Figure 6.8 compares the performance of

the system in these two cases. When the navigation subtasks are configured to represent

joint-actions, learning is considerably slower (since the number of parameters is increased

significantly) and the overall performance is not better. The lack of improvement is due in

part to the fact that the AGV travel is unidirectional, as shown in Figure 6.2, thus coordi-

nation at the navigation level does not improve the performance of the system. However,

there exist problems that adding joint-actions in multiple levels will be worthwhile, even if

convergence is slower, due to better overall performance.

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000 100000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Cooperative HRL - Cooperation at Top Level of the Hierarchy
Cooperative HRL - Cooperation at Top and Third Levels of the Hierarchy

Figure 6.8. This plot compares the performance of the Cooperative HRL algorithm with
cooperation at the top level of the hierarchy vs. cooperation at the top and third levels of
the hierarchy.

107

6.5 Incorporating Communication Decisions in the Framework

Communication is used by agents to obtain local information of their teammates by

paying a certain cost. The Cooperative HRL algorithm described in Section 6.3 works

under three important assumptions, free, reliable, and instantaneous communication, i.e.,

communication cost is zero, no message is lost in the environment, and each agent has

enough time to receive information about its teammates before taking its next action. Since

communication is free, as soon as an agent selects an action at a cooperative subtask,

it broadcasts it to the team. Using this simple rule, and the fact that communication is

reliable and instantaneous, whenever an agent is about to choose an action at an lth level

cooperative subtask, it knows the subtasks in Ul being performed by all its teammates.

However, communication can be costly and unreliable in real-world problems. When

communication is not free, it is no longer optimal for a team that agents always broadcast

actions taken at their cooperative subtasks to their teammates. Therefore, agents must

learn to optimally use communication by taking into account its long term return and its

immediate cost. In the remainder of this chapter, we examine the case that communication

is not free, but still assume that it is reliable and instantaneous. In this section, we first

describe the communication framework and then illustrate how we extend the Cooperative

HRL algorithm to include communication decisions and propose a new algorithm, called

COM-Cooperative HRL. The goal of this algorithm is to learn a hierarchical policy (a set

of policies for all subtasks including the communication subtasks) to maximize the team

utility given the communication cost. Finally, in Section 6.6, we demonstrate the efficacy

of COM-Cooperative HRL algorithm as well as the relation between the communication

cost and the learned communication policy using a multi-agent taxi domain.

6.5.1 Communication Among Agents

Communication usually consists of three steps: send, answer, and receive. At the send

step ts, agent j decides if communication is necessary, performs a communication ac-

108

tion and sends a message to agent i. At the answer step ta ≥ ts, agent i receives the

message from agent j, updates its local information using the content of the message (if

necessary) and sends back the answer (if required). At the receive step tr ≥ ta, agent

j receives the answer of its message, updates its local information and decides on which

non-communicative action to execute. Generally there are two types of messages in a

communication framework: request and inform. For simplicity, we suppose that relative

ordering of messages do not change, which means that for two communication actions c1

and c2, if ts(c1) < ts(c2) then ta(c1) ≤ ta(c2) and tr(c1) ≤ tr(c2). The following three

types of communication actions are commonly used in a communication model:

• Tell(j, i): agent j sends an inform message to agent i.

• Ask(j, i): agent j sends a request message to agent i, which is answered by agent i

with an inform message.

• Sync(j, i): agent j sends an inform message to agent i, which is answered by agent

i with an inform message.

In the Cooperative HRL algorithm described in Section 6.3, we assume free, reliable

and instantaneous communication. Hence, the communication protocol of this algorithm

is as follows: whenever an agent chooses an action at a cooperative subtask, it executes a

Tell communication action and sends its selected action as an inform message to all other

agents. As a result, when an agent is going to choose an action at an lth level cooperative

subtask, it knows actions being performed by all other agents in Ul. Tell and inform are the

only communication action and type of message used in the communication protocol of the

Cooperative HRL algorithm.

6.5.2 A Hierarchical Multi-Agent RL Algorithm with Communication Decisions

When communication is costly in the Cooperative HRL algorithm, it is no longer op-

timal for the team that each agent broadcasts its action to all its teammates. In this case,

109

each agent must learn to optimally use the communication. To address the communication

cost in the COM-Cooperative HRL algorithm, we add a communication level to the task

graph of the problem below each cooperation level, as shown in Figure 6.9 for the trash

collection task. In this algorithm, when an agent is going to make a decision at an lth level

cooperative subtask, it first decides whether to communicate (takes Communicate action)

with the other agents to acquire their actions in Ul, or do not communicate (takes Not-

Communicate action) and selects its action without inquiring new information about its

teammates. Agents decide about communication by comparing the expected value of com-

munication plus the communication cost, Q̂(Parent(Com), s, Com)+ComCost, with the

expected value of not communicating with the other agents, Q̂(Parent(NotCom), s, Not−

Com). If agent j decides not to communicate, it chooses an action like a selfish agent

by using its action-value function Q̂j(NotCom, s, a), where a ∈ Children(NotCom)

(not its joint-action-value function). When it decides to communicate, it first takes com-

munication action Ask(j, i), ∀i ∈ {1, . . . , j − 1, j + 1, . . . , n}, where n is the number

of agents, and sends a request message to all other agents. Other agents reply by tak-

ing communication action Tell(i, j) and send their action in Ul as an inform message to

agent j. Then agent j uses its joint-action-value function Q̂j(Com, s, a1, . . . , aj−1, aj+1,

. . . , an, a), a ∈ Children(Com) (not its action-value function) to select its next action in

Ul. For instance, in the trash collection task, when agent A1 dumps trash and is going to

move to one of the two trash cans, it should first decide whether to communicate with agent

A2 in order to inquire its action in U1 = {collect trash at T1, collect trash at T2} or

not. To make a communication decision, agent A1 compares Q̂1(Root, s ,NotCom) with

Q̂1(Root, s, Com)+ComCost. If it chooses not to communicate, it selects its action using

Q̂1(NotCom, s, a), where a ∈ U1. If it decides to communicate, after acquiring the action

of agent A2 in U1, aA2, it selects its own action using Q1(Com, s, aA2, a), where a and aA2

both belong to U1.

110

Find WallAlign with WallFollow Wall

Navigate to T1 Pick PutNavigate to Dump Navigate to T2

Root

Communication Level

Cooperation Level Cooperative Subtask

 Cooperative Subtask (Root)

Communicate Not−Communicate

Collect Trash at T1 Collect Trash at T2 U = Children of the top−level1

Figure 6.9. Task graph of the trash collection problem with communication actions.

In the COM-Cooperative HRL, we assume that when an agent decides to communicate,

it communicates with all other agents as described above. We can make the model more

complicated by making decision about communication with each individual agent. In this

case, the number of communication actions would be C1
n−1 + C2

n−1 + . . . + Cn−1
n−1 , where

Cq
p is the number of distinct combinations selecting q out of p agents. For instance, in a

three-agent case, communication actions for agent 1 would be communicate with agent 2,

communicate with agent 3, and communicate with both agents 2 and 3. It increases the

number of communication actions and therefore the number of parameters to be learned.

However, there are methods to reduce the number of communication actions in real-world

applications. For instance, we can cluster agents based on their role in the team and assume

each cluster as a single entity to communicate with. It reduces n from the number of agents

to the number of clusters.

In the COM-Cooperative HRL algorithm, Communicate subtasks are configured to store

joint completion function values, and Not-Communicate subtasks are configured to store

completion function values. The joint completion function for agent j, C j(Com, s, a1, . . . ,

111

aj−1, aj+1, . . . , an, aj) is defined as the expected discounted reward of completing subtask

aj by agent j in the context of the parent task Com, when other agents performing sub-

tasks ai,∀i ∈ {1, . . . , j − 1, j + 1, . . . , n}. In the trash collection domain, if agent A1

communicates with agent A2, its value function decomposition would be

Q̂1(Com, s, Collect Trash at T2, Collect Trash at T1) = V̂ 1(Collect Trash at T1, s) +

C1(Com, s, Collect Trash at T2, Collect Trash at T1)

which represents the projected value of agent A1 performing subtask collect trash at T1,

when agent A2 is executing subtask collect trash at T2. Note that this value is decom-

posed into the projected value of subtask collect trash at T1 and the value of completing

subtask Parent(Com) (here root is the parent of subtask Com) after executing subtask

collect trash at T1. If agent A1 does not communicate with agent A2, its value function

decomposition would be

Q̂1(NotCom, s, Collect Trash at T1) = V̂ 1(Collect Trash at T1, s)

+ C 1(NotCom, s, Collect Trash at T1)

which represents the projected value of agent A1 performing subtask collect trash at T1,

regardless of the action being executed by agent A2.

Again, the V̂ and C values are learned through a standard TD-learning method based on

sample trajectories similar to the one presented in Algorithm 3. Completion function values

for an action in Ul is updated when we take the action under Not-Communicate subtask,

and joint completion function values for an action in Ul is updated when it is selected under

Communicate subtask. In the later case, the actions selected in Ul by the other agents are

known as a result of communication and are used to update the joint completion function

values.

112

6.6 Experimental Results for the COM-Cooperative HRL Algorithm

In this section, we demonstrate the performance of the COM-Cooperative HRL algo-

rithm proposed in Section 6.5.2 using a multi-agent taxi problem. We also investigate the

relation between the communication policy and the communication cost in this domain.

Consider a 5-by-5 grid world inhabited by two taxis (T1 and T2) shown in Figure 6.10.

There are four stations in this domain, marked as B(lue), G(reen), R(ed) and Y(ellow).

The task is continuing, passengers appear according to a fixed passenger arrival rate5 at

these four stations and wish to be transported to one of the other stations chosen randomly.

Taxis must go to the location of a passenger, pick up the passenger, go to her/his destina-

tion station, and drop the passenger there. The goal here is to increase the throughput of

the system, which is measured in terms of the number of passengers dropped off at their

destinations per 5, 000 time steps, and to reduce the average waiting time per passenger.

This problem can be decomposed into subtasks and the resulting task graph is shown in

Figure 6.10. Taxis need to learn three skills here. First, how to do each subtask, such

as navigate to B, G, R or Y , and when to perform Pickup or Putdown action. Second,

the order to do the subtasks, i.e., for instance go to a station and pickup a passenger be-

fore heading to the passenger’s destination. Finally, how to communicate and coordinate

with each other, i.e., if taxi T1 is on its way to pick up a passenger at location Blue, taxi

T2 should serve a passenger at one of the other stations. The state variables in this task

are the locations of taxis (25 values each), status of taxis (5 values each, taxi is empty or

transporting a passenger to one of the four stations), and status of stations B, G, R and Y

(4 values each, station is empty or has a passenger whose destination is one of the other

three stations). Thus, in the multi-agent flat case, the size of the state space would grow

to 4 × 106. The size of the Q table is this number multiplied by the number of primitive

actions 10, which is 4× 107. In the selfish multi-agent HRL algorithm, using state abstrac-

5Passenger arrival rate 10 indicates that on average, one passenger arrives at stations every 10 time steps.

113

tion and the fact that each agent stores only its own state variables, the number of the C

and V values to be learned is reduced to 2 × 135, 895 = 271, 790, which is 135,895 val-

ues for each agent. In the Cooperative HRL algorithm, the number of values to be learned

would be 2×729, 815 = 1, 459, 630. Finally in the COM-Cooperative HRL algorithm, this

number would be 2 × 934, 615 = 1, 869, 230. In the COM-Cooperative HRL, we define

root as a cooperative subtask and the highest level of the hierarchy as a cooperation level

as shown in Figure 6.10. Thus, root is the only member of the cooperation set at that level,

and U1 = Aroot = {GetB, GetG, GetR, GetY, Wait, Put}. The joint-action space

for root is specified as the cross product of the root action set and U1. Finally, τcontinue

termination scheme is used for joint-action selection in this domain. All the experiments in

this section were repeated five times and the results were averaged.

T1: Taxi 1
T2: Taxi 2
B: Blue Station
G: Green Station
R: Red Station
Y: Yellow Station

0 1 2 3 4

0

1

2

3

4

T1

T2

G

BY

R Communication
Level

Putdown

Children of
the top−level
Cooperative
Subtask (Root)

Pick B

Get B

Pick G Pick R Pick YNav B Nav RNav G Nav Y

Root Cooperative SubtaskCooperation Level

Communicate Not−Communicate

PutGet G Get R Get Y Wait

North South EastWest

Nav

Figure 6.10. A multi-agent taxi domain and its associated task graph.

Figures 6.11 and 6.12 show the throughput of the system and the average waiting time

per passenger for four algorithms, single-agent HRL, selfish multi-agent HRL, Cooperative

HRL and COM-Cooperative HRL when communication cost is zero.6 As seen in Figures

6The COM-Cooperative HRL uses the task graph in Figure 6.10. The Cooperative HRL uses the same
task graph without the communication level.

114

6.11 and 6.12, Cooperative HRL and COM-Cooperative HRL with ComCost = 0 have

better throughput and average waiting time per passenger than selfish multi-agent HRL

and single-agent HRL. The COM-Cooperative HRL learns slower than Cooperative HRL,

due to more parameters to be learned in this model. However, it eventually converges to

the same performance as the Cooperative HRL does.

0 5 10 15

x 10
4

300

350

400

450

500

550

600

650

700

750

Number of Steps (Passenger Arrival Rate = 10)

T
h

ro
u

g
h

p
u

t
o

f
th

e
S

ys
te

m

Single−Agent HRL
Selfish Multiagent HRL
Cooperative HRL
COM−Cooperative HRL, ComCost = 0

Figure 6.11. This figure shows that the Cooperative HRL and the COM-Cooperative HRL
with ComCost = 0 have better throughput than the selfish multi-agent HRL and the single-
agent HRL.

Figure 6.13 compares the average waiting time per passenger for the multi-agent self-

ish HRL and the COM-Cooperative HRL with ComCost = 0 for three different passenger

arrival rates (5, 10, and 20). It demonstrates that as the passenger arrival rate becomes

smaller, the coordination among taxis becomes more important. When taxis do not coordi-

nate, it is possible that both taxis go to the same station. In this case, the first taxi picks up

the passenger and the other one returns empty. This case can be avoided by incorporating

coordination in the system. However, when the passenger arrival rate is high, there is a

chance that a new passenger arrives after the first taxi picked up the previous passenger and

115

2 4 6 8 10 12 14

x 10
4

20

25

30

35

40

45

50

55

60

65

Number of Steps (Passenger Arrival Rate = 10)

A
ve

ra
g

e
W

ai
ti

n
g

 T
im

e
p

er
 P

as
se

n
g

er

Single−Agent HRL
Selfish Multiagent HRL
Cooperative HRL
COM−Cooperative HRL, ComCost = 0

Figure 6.12. This figure shows that the average waiting time per passenger in the Coop-
erative HRL and the COM-Cooperative HRL with ComCost = 0 is less than the selfish
multi-agent HRL and the single-agent HRL.

before the second taxi reaches the station. This passenger will be picked up by the second

taxi. In this case, coordination would not be as crucial as the case when the passenger

arrival rate is low.

Figure 6.14 demonstrates the relation between the communication policy and the com-

munication cost. These two figures show the throughput and the average waiting time per

passenger for the selfish multi-agent HRL and the COM-Cooperative HRL when the com-

munication cost equals 0, 1, 5, and 10. In both figures, as the communication cost increases,

the performance of the COM-Cooperative HRL becomes closer to the selfish multi-agent

HRL. It indicates that when communication is expensive, agents learn not to communicate

and to be selfish.

116

2 4 6 8 10 12 14

x 10
4

15

20

25

30

35

40

Number of Steps (Passenger Arrival Rate = 5)

A
ve

ra
g

e
W

ai
ti

n
g

 T
im

e
p

er
 P

as
se

n
g

er

Selfish Multiagent HRL
COM−Cooperative HRL, ComCost = 0

2 4 6 8 10 12 14

x 10
4

15

20

25

30

35

40

Number of Steps (Passenger Arrival Rate = 10)

A
ve

ra
g

e
W

ai
ti

n
g

 T
im

e
p

er
 P

as
se

n
g

er

Selfish Multiagent HRL
COM−Cooperative HRL, ComCost = 0

2 4 6 8 10 12 14

x 10
4

15

20

25

30

35

40

Number of Steps (Passenger Arrival Rate = 20)

A
ve

ra
g

e
W

ai
ti

n
g

 T
im

e
p

er
 P

as
se

n
g

er

Selfish Multiagent HRL
COM−Cooperative HRL, ComCost = 0

Figure 6.13. This figure compares the average waiting time per passenger for the selfish
multi-agent HRL and the COM-Cooperative HRL with ComCost = 0 for three different
passenger arrival rates (5, 10 and 20). It shows that coordination among taxis becomes
more crucial as the passenger arrival rate becomes smaller.

117

0 2 4 6 8 10 12 14 16

x 10
4

400

450

500

550

600

650

700

Number of Steps (Passenger Arrival Rate = 5)

T
h

ro
u

g
h

p
u

t
o

f
th

e
S

ys
te

m

Selfish Multiagent HRL
COM−Cooperative HRL, ComCost = 0
COM−Cooperative HRL, ComCost = 1
COM−Cooperative HRL, ComCost = 5
COM−Cooperative HRL, ComCost = 10

2 4 6 8 10 12 14 16

x 10
4

18

20

22

24

26

28

30

Number of Steps (Passenger Arrival Rate = 5)

A
ve

ra
g

e
W

ai
ti

n
g

 T
im

e
p

er
 P

as
se

n
g

er

Selfish Multiagent HRL
COM−Cooperative HRL, ComCost = 0
COM−Cooperative HRL, ComCost = 1
COM−Cooperative HRL, ComCost = 5
COM−Cooperative HRL, ComCost = 10

Figure 6.14. This figure shows that as communication cost increases, the throughput (top)
and the average waiting time per passenger (bottom) of the COM-Cooperative HRL be-
come closer to the selfish multi-agent HRL. It indicates that agents learn to be selfish when
communication is expensive.

118

6.7 Conclusions and Future Work

In this chapter, we studied methods for learning to communicate and act in cooperative

multi-agent systems using hierarchical reinforcement learning. The key idea underlying

our approach is that coordination skills are learned much more efficiently if agents have a

hierarchical representation of the task structure. The use of hierarchy speeds up learning

in multi-agent domains by making it possible to learn coordination skills at the level of

subtasks instead of primitive actions. A further advantage of this approach over flat learning

methods is that, since high-level subtasks take a long time to complete, communication is

needed fairly infrequently. We proposed two new cooperative multi-agent HRL algorithms,

Cooperative HRL and COM-Cooperative HRL using the above idea. In both algorithms,

agents are homogeneous, i.e., use the same task decomposition, learning is decentralized

and each agent learns three interrelated skills: how to perform subtasks, which order to do

them in, and how to coordinate with other agents.

In Cooperative HRL, we assume communication is free and therefore agents do not

need to decide if communication with their teammates is necessary. We demonstrate the

efficacy of this algorithm using a four-agent AGV scheduling problem. We compare the

performance of Cooperative HRL algorithm with other algorithms such as selfish multi-

agent HRL, single-agent HRL, and flat Q-learning in these domains. We also show that

Cooperative HRL outperforms widely used industrial heuristics, such as “first come first

serve”, “highest queue first” and “nearest station first”.

In COM-Cooperative HRL, we address the issue of rational communicative behavior

among autonomous agents. The goal is to learn both action and communication policies

that together optimize the task given the communication cost. This algorithm is an exten-

sion of Cooperative HRL by including communication decisions in the model. We study

the empirical performance of COM-Cooperative HRL algorithm as well as the relation

between the communication cost and the communication policy using a multi-agent taxi

problem.

119

There are a number of directions for future work which can be briefly outlined. An

immediate question that arises is the classes of cooperative multi-agent problems in which

the proposed algorithms converge to a good approximation of optimal policy. The exper-

iments of this paper show that the effectiveness of these algorithms is most apparent in

tasks where agents rarely interact at the low levels (for example in the trash collection task,

two robots may rarely need to exit through the same door at the same time). However,

the algorithms can be easily generalized and adapted to constrained environments where

agents are constantly running into one another (for example ten robots in a small room all

trying to leave the room at the same time) by extending cooperation to lower levels of the

hierarchy. This will result in a much larger set of action values that need to be learned,

and consequently learning will be much slower. A number of extensions would be useful,

from studying the scenario where agents are heterogeneous, to recognizing the high-level

subtasks being performed by other agents using a history of observations (plan recogni-

tion and activity modeling) instead of direct communication. In the later case, we assume

that each agent can observe its teammates and uses its observations to extract their high-

level subtasks. Good examples for this approach are games such as soccer, football or

basketball, in which players often extract the strategy being performed by their teammates

using recent observations instead of direct communication. Saria and Mahadevan (2004)

presented a theoretical framework for online probabilistic plan recognition in cooperative

multi-agent systems. Their model extends the abstract hidden Markov model (AHMM)

(Bui et al., 2002) to cooperative multi-agent domains. We believe that the model presented

by Saria and Mahadevan can be combined with the learning algorithms proposed in this

chapter to reduce the communication by learning to recognize the high-level subtasks be-

ing performed by other agents.

Another direction for future work is to study different termination schemes for compos-

ing temporally extended actions. We used τcontinue termination strategy in the algorithms

proposed in this paper. However, it would be beneficial to investigate τany and τall termina-

120

tion schemes in our model. Many other manufacturing and robotics problems can benefit

from these algorithms. Combining the proposed algorithms with function approximation

and factored action models, which makes them more appropriate for continuous state prob-

lems, is also an important area of research. In this direction, we believe that the algorithms

proposed in this chapter can be combined with the hierarchical policy gradient algorithms

proposed in Chapter 5 to be used in multi-agent domains with continuous state and/or ac-

tion. Finally, studying those communication features that have not been considered in our

model such as message delay and probability of loss is another fundamental problem that

needs to be addressed.

121

Algorithm 3 The Cooperative HRL algorithm.
1: Function Cooperative-HRL(Agent j, Task i at the lth level of the hierarchy, State s)
2: let Seq = {} be the sequence of (state-visited, actions in

⋃L
k=1 Uk being performed by the other agents)

while executing i /* L is the number of levels in the hierarchy */
3: if i is a primitive action then
4: execute action i in state s, receive reward r(s, i) and observe state s′

5: V
j
t+1(i, s)←− (1− α

j
t (i))V

j
t (i, s) + α

j
t (i)r(s, i)

6: push (state s, actions in {Ul|l is a cooperation level} being performed by the other agents) onto the
front of Seq

7: else /* i is a non-primitive subtask */
8: while i has not terminated do
9: if i is a cooperative subtask then

10: choose action aj according to the current exploration policy
µ

j
i (s, a

1, . . . , aj−1, aj+1, . . . , an)
11: let ChildSeq = Cooperative-HRL(j, aj , s), where ChildSeq is the sequence of (state-visited,

actions in
⋃L

k=1 Uk being performed by the other agents) while executing action aj

12: observe result state s′ and â1, . . . , âj−1, âj+1, . . . , ân actions in Ul being performed by the
other agents

13: let a∗ = arg maxa′∈Ai
[Cj

t (i, s′, â1, . . . , âj−1, âj+1, . . . , ân, a′) + V
j
t (a′, s′)]

14: let N = 0
15: for each (s, a1, . . . , aj−1, aj+1, . . . , an) in ChildSeq from the beginning do
16: N = N + 1
17: C

j
t+1(i, s, a

1, . . . , aj−1, aj+1, . . . , an, aj)←−
(1− α

j
t (i))C

j
t (i, s, a1, . . . , aj−1, aj+1, . . . , an, aj)+

α
j
t (i)γ

N [Cj
t (i, s′, â1, . . . , âj−1, âj+1, . . . , ân, a∗) + V̂

j
t (a∗, s′)]

18: end for
19: else /* i is not a cooperative subtask */
20: choose action aj according to the current exploration policy µ

j
i (s)

21: let ChildSeq = Cooperative-HRL(j, aj , s), where ChildSeq is the sequence of (state-visited,
actions in

⋃L
k=1 Uk being performed by the other agents) while executing action aj

22: observe result state s′

23: let a∗ = arg maxa′∈Ai
[Cj

t (i, s′, a′) + V̂
j
t (a′, s′)]

24: let N = 0
25: for each state s in ChildSeq from the beginning do
26: N = N + 1
27: C

j
t+1(i, s, a

j)←− (1− α
j
t (i))C

j
t (i, s, aj) + α

j
t (i)γ

N [Cj
t (i, s′, a∗) + V̂

j
t (a∗, s′)]

28: end for
29: end if
30: append ChildSeq onto the front of Seq
31: s = s′

32: end while
33: end if
34: return Seq

35: end Cooperative-HRL

122

CHAPTER 7

SCHEDULE FOR COMPLETION OF THE DISSERTATION

In this chapter, we describe our plan for completing this dissertation and present a

possible time line.

We plan to extend the work presented in Chapter 4 on hierarchical average reward

reinforcement learning in two directions. 1) We intend to prove the asymptotic conver-

gence of the hierarchically optimal average reward RL (HO-AR) algorithm introduced in

Section 4.2. These results should provide a measure of theoretical validity to the proposed

algorithm, in addition to their empirical effectiveness demonstrated in Section 4.3. 2) We

plan to study the notion of recursive optimality in hierarchical average reward model. The

hierarchical optimal average reward policy has the highest gain among all policies consis-

tent with the given hierarchy. However, there might exist a subtask where its policy must be

locally suboptimal so that the overall policy becomes optimal. On the other hand, the goal

in a recursively optimal average reward RL framework is to optimize the policy at each

subtask given the policies of its children, in addition to maximizing the gain of the root

task given the policy of the other subtasks in the hierarchy. It makes it possible to optimize

each subtask without reference to the context in which it is executed. Since all subtasks in

the hierarchy except root are episodic, the question here is what local optimality criterion

should be used by them? And, is the local optimality employed in subtasks is consistent

with the type of gain optimality at root that we are looking for?

We plan to extend the work presented in Chapter 5 on hierarchical policy gradient

reinforcement learning to the case where the overall task (root of the hierarchy) is contin-

uing.

123

We plan to conduct a set of experiments on a multi-agent continuous state and ac-

tion problem to evaluate the algorithms presented in Chapters 5 and 6. We intend to use

a continuous state and action version of either the multi-agent AGV scheduling problem

used in the experiments of Section 6.4, or the multi-agent taxi problem used in the exper-

iments of Section 6.6. In these problems, the AGVs (taxis) must learn to navigate using

low-level continuous commands instead of directional actions such as move forward or

turn left. Besides, the AGVs (taxis) have continuous sensors instead of only viewing the

world as a discrete grid. We believe this set of experiments will demonstrate that AGVs

(taxis) can exploit the power of policy gradient based RL techniques in solving continuous

state and/or action problems, plus the high-level coordination provided by the hierarchi-

cal multi-agent RL framework presented in Chapter 6, to learn a good policy for such a

complex task.

7.1 Schedule

In this section, we provide a time line to complete the remaining work.

January 2005 - March 2005

1. Proof of the asymptotic convergence of the hierarchically optimal average reward RL

(HO-AR) algorithm.

2. Study the notion of recursive optimality in hierarchical average reward reinforcement

learning.

April 2005 - June 2005

1. Extend work on hierarchical policy gradient reinforcement learning to the case where

the overall task is continuing.

2. Conduct a set of experiments on a multi-agent continuous state and action AGV (taxi)

problem.

124

July 2005 - August 2005

1. Finish experiments.

2. Complete writing the thesis.

3. Final defense.

125

APPENDIX

INDEX OF SYMBOLS

Here we present a list of the symbols used in this dissertation to hopefully alleviate the

difficulty for the reader, or at least provide a handy reference.

Notation Definition
IR set of real numbers
IN set of natural numbers
E expected value
M an MDP model
Mi subtask i in a hierarchy
H a hierarchy
S set of states
A set of actions
As set of admissible actions in state s

P transition probability function in MDP and multi-step transition probability
function in SMDP

P (s′|s, a) probability that action a causes transition from state s to state s′

R reward function
r(s, a) reward of taking action a in state s

I initial state distribution
µ a policy

µ(a|s) probability that policy µ selects action a in state s

µ∗ optimal policy
γ discount factor
α learning rate parameter

V µ value function of policy µ in flat models and hierarchical value function of
hierarchical policy µ in hierarchical models

V ∗ optimal value function
Qµ action-value function of policy µ in flat models and hierarchical action-value

function of hierarchical policy µ in hierarchical models
Q∗ optimal action-value function
Γ∗ Bellman operator
gµ average reward or gain of policy µ

g∗ gain of the gain optimal policy
y(s, a) expected number of transition steps until the next decision epoch

126

Notation Definition
Hµ average-adjusted value function of policy µ in flat models and hierarchical

average-adjusted value function of hierarchical policy µ in hierarchical models
H∗ average-adjusted value function of the gain optimal policy in flat models

and average-adjusted value function of the hierarchically optimal average
reward policy in hierarchical models

Lµ average-adjusted action-value function of policy µ in flat models and
hierarchical average-adjusted action-value function of hierarchical policy µ in

hierarchical models
L∗ average-adjusted action-value function of the gain optimal policy in flat

models and average-adjusted action-value function of the hierarchically
optimal average reward policy in hierarchical models

P (s′, N |s, a) probability that action a will cause the system to transition from state s to
state s′ in N time steps

Si set of states for subtask i in a hierarchy
Ai set of actions for subtask i in a hierarchy
Ri reward function for subtask i in a hierarchy
Ii initiation set for subtask i in a hierarchy
Ti termination set for subtask i in a hierarchy
µi policy for subtask i in a hierarchy

P
µ
i (s′, N |s) probability that action µi(s) causes transition from state s

to state s′ in N primitive steps under hierarchical policy µ

F
µ
i multi-step abstract transition probability function of subtask i in a hierarchy

F
µ
i (s′, N |s) probability of transition from state s to state s′ in N abstract actions taken

by subtask i under hierarchical policy µ

Ω set of possible values for Task Stack in a hierarchy
X = Ω× S joint state space of Task Stack values and states in a hierarchy
x = (ω, s) joint state value x formed by Task Stack value ω and state value s in a

hierarchy
ω ↗ i popping subtask i off Task Stack with content ω in a hierarchy
i↘ ω pushing subtask i onto Task Stack with content ω in a hierarchy
|S| cardinality of set S

V̂ µ projected value function of hierarchical policy µ

Q̂µ projected action-value function of hierarchical policy µ

Ĥµ projected average-adjusted value function of hierarchical policy µ

L̂µ projected average-adjusted action-value function of hierarchical policy µ

Cµ completion function of hierarchical policy µ

πµ steady state probability vector of the Markov chain defined by policy µ

πµ(s) steady state probability of being in state s for the Markov chain defined by
policy µ

θ set of policy parameters
sT
i a terminal state of subtask i, sT

i ∈ Ti

χi(θ) weighted reward-to-go of subtask i under the hierarchical policy parameterized
by parameter set θ

Ji(s; θ) reward-to-go of subtask i in state s under hierarchical policy parameterized
by parameter set θ

127

BIBLIOGRAPHY

Abounadi, J., Bertsekas, D. P., and Borkar, V. S. (2001). Learning algorithms for Markov
decision processes with average cost. SIAM Journal on Control and Optimization,
40:681–698.

Andre, D. (2003). Programmable Reinforcement Learning Agents. PhD thesis, University
of California at Berkeley.

Andre, D. and Russell, S. J. (2001). Programmable reinforcement learning agents. In
Proceedings of Advances in Neural Information Processing Systems 13, pages 1019–
1025. MIT Press.

Andre, D. and Russell, S. J. (2002). State abstraction for programmable reinforcement
learning agents. In Proceedings of the Eighteenth National Conference on Artificial
Intelligence, pages 119–125.

Askin, R. and Standridge, C. (1993). Modeling and Analysis of Manufacturing Systems.
John Wiley and Sons.

Balch, T. and Arkin, R. (1998). Behavior-based formation control for multi-robot teams.
IEEE Transactions on Robotics and Automation, 14:1–15.

Barto, A. and Mahadevan, S. (2003). Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Systems (Special Issue on Reinforcement Learning), 13:41–77.

Baxter, J. and Bartlett, P. (2001). Infinite-horizon policy-gradient estimation. Journal of
Artificial Intelligence Research, 15:319–350.

Baxter, J., Bartlett, P., and Weaver, L. (2001). Experiments with infinite-horizon policy-
gradient estimation. Journal of Artificial Intelligence Research, 15:351–381.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.

Bernstein, D., Zilberstein, S., and Immerman, N. (2000). The complexity of decentralized
control of Markov decision processes. In Proceedings of the Sixteenth International
Conference on Uncertainty in Artificial Intelligence, pages 32–37.

Bertsekas, D. (1995). Dynamic Programming and Optimal Control. Athena Scientific.

Bertsekas, D. (1998). A new value iteration method for the average cost dynamic program-
ming problem. SIAM on Control and Optimization, 36:742–759.

Bertsekas, D. and Tsitsiklis, J. (1996). Neuro-Dynamic Programming. Athena Scientific.

128

Blackwell, D. (1962). Discrete dynamic programming. Ann. Math. Stat., 33:719–726.

Boutilier, C. (1999). Sequential optimality and coordination in multiagent systems. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence,
pages 478–485.

Bowling, M. and Veloso, M. (2002). Multiagent learning using a variable learning rate.
Artificial Intelligence, 136:215–250.

Bradtke, S. and Duff, M. (1995). Reinforcement learning methods for continuous-time
Markov decision problems. In Proceedings of Advances in Neural Information Process-
ing Systems 7, pages 393–400. MIT Press.

Brafman, R. and Tennenholtz, M. (1997). Modeling agents as qualitative decision makers.
Artificial Intelligence, 94:217–268.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, pages 14–23.

Bui, H., Venkatesh, S., and West, G. (2002). Policy recognition in the abstract hidden
Markov model. Journal of Artificial Intelligence Research, 17:451–499.

Cao, X., Ren, Z., Bhatnagar, S., Fu, M., and Marcus, S. (2002). A time aggregation ap-
proach to Markov decision processes. Automatica, 38:929–943.

Cassandras, C. and Lafortune, S. (1999). Introduction to Discrete Event Systems. Kluwer
Academic Publishers.

Crites, R. and Barto, A. (1998). Elevator group control using multiple reinforcement learn-
ing agents. Machine Learning, 33:235–262.

Currie, K. and Tate, A. (1991). O-plan: The open planning architecture. Artificial Intelli-
gence, 52(1):1104–1111.

Dayan, P. and Hinton, G. (1993). Feudal reinforcement learning. In Proceedings of Ad-
vances in Neural Information Processing Systems 5, pages 271–278.

de Farias, D. P. (2002). The Linear Programming Approach to Approximate Dynamic
Programming: Theory and Application. PhD thesis, Stanford University.

Dietterich, T. (1998). The MAXQ method for hierarchical reinforcement learning. In
Proceedings of the Fifteenth International Conference on Machine Learning, pages 118–
126.

Dietterich, T. (2000). Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence Research, 13:227–303.

Dietterich, T. and Wang, X. (2002). Batch value function approximation via support vec-
tors. In Proceedings of Advances in Neural Information Processing Systems 14, pages
1491–1498.

129

Digney, B. (1996). Emergent hierarchical control structures: Learning hierarchical/reactive
relationships in reinforcement learning environments. In From Animals to Animats 4,
pages 363–373.

Drescher, G. (1991). Made-up Minds, A Constructivist Approach to Artificial Intelligence.
MIT Press.

Filar, J. and Vrieze, K. (1997). Competitive Markov Decision Processes. Springer Verlag.

Forestier, J. and Varaiya, P. (1978). Multilayer control of large Markov chains. IEEE
Transactions on Automatic Control, 23(2):298–304.

Gershwin, S. (1994). Manufacturing Systems Engineering. Prentice Hall.

Ghavamzadeh, M. and Mahadevan, S. (2001). Continuous-time hierarchical reinforcement
learning. In Proceedings of the Eighteenth International Conference on Machine Learn-
ing, pages 186–193.

Ghavamzadeh, M. and Mahadevan, S. (2002). Hierarchically optimal average reward re-
inforcement learning. In Proceedings of the Nineteenth International Conference on
Machine Learning, pages 195–202.

Ghavamzadeh, M. and Mahadevan, S. (2003). Hierarchical policy gradient algorithms.
In Proceedings of the Twentieth International Conference on Machine Learning, pages
226–233.

Ghavamzadeh, M. and Mahadevan, S. (2004). Learning to communicate and act using hi-
erarchical reinforcement learning. In Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems, pages 1114–1121.

Gordon, G. (1999). Approximate Solutions to Markov Decision Processes. PhD thesis,
Carnegie Mellon University.

Guestrin, C., Koller, D., and Parr, R. (2001). Max-norm projections for factored MDPs. In
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence,
pages 673–680.

Guestrin, C., Lagoudakis, M., and Parr, R. (2002). Coordinated reinforcement learning.
In Proceedings of the Nineteenth International Conference on Machine Learning, pages
227–234.

Hengst, B. (2002). Discovering hierarchy in reinforcement learning with HEXQ. In Pro-
ceedings of the Nineteenth International Conference on Machine Learning, pages 243–
250.

Ho, Y. and Cao, X. (1991). Perturbation Analysis of Discrete Event Dynamic Systems.
Kluwer.

Howard, R. (1960). Dynamic Programming and Markov Processes. MIT Press.

130

Howard, R. (1971). Dynamic Probabilistic Systems: Semi-Markov and Decision Processes.
John Wiley and Sons.

Hu, J. and Wellman, M. (1998). Multiagent reinforcement learning: Theoretical framework
and an algorithm. In Proceedings of the Fifteenth International Conference on Machine
Learning, pages 242–250.

Huber, M. and Grupen, R. (1997). A feedback control structure for online learning tasks.
Robotics and Autonomous Systems, 22:303–315.

Jaakkola, T., Jordan, M., and Singh, S. (1994). On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6(6):1185–1201.

Jonsson, A. and Barto, A. (2005). A causal approach to hierarchical decomposition of
factored MDPs. Under Preparation.

Kaelbling, L. (1993a). Hierarchical reinforcement learning: Preliminary results. In Pro-
ceedings of the Tenth International Conference on Machine Learning, pages 167–173.

Kaelbling, L. (1993b). Learning to achieve goals. In Proceedings of the Thirteenth Inter-
national Joint Conference on Artificial Intelligence, pages 1094–1098.

Kaelbling, L., Littman, M., and Moore, A. (1996). Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237–285.

Kearns, M., Littman, M., and Singh, S. (2001). Graphical models for game theory. In
Proceedings of the Thirteenth International Conference on Uncertainty in Artificial In-
telligence, pages 253–260.

Kearns, M., Mansour, Y., and Ng, A. (2000). Approximate planning in large POMDPs
via reusable trajectories. In Proceedings of Advances in Neural Information Processing
Systems 12, pages 1001–1007. MIT Press.

Kimura, H., Yamamura, M., and Kobayashi, S. (1995). Reinforcement learning by stochas-
tic hill-climbing on discounted reward. In Proceedings of the Twelfth International Con-
ference on Machine Learning, pages 295–303.

Klein, C. and Kim, J. (1996). AGV dispatching. International Journal of Production
Research, 34:95–110.

Knoblock, C. (1990). Learning abstraction hierarchies for problem solving. In Proceedings
of the Eight National Conference on Artificial Intelligence, pages 923–928.

Kokotovic, P., Khalil, H., and O’Reilly, J. (1986). Singular Perturbation Methods in Con-
trol: Analysis and Design. Academic Press.

Koller, D. and Milch, B. (2001). Multiagent influence diagrams for representing and solv-
ing games. In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence, pages 1027–1034.

131

Koller, D. and Parr, R. (2000). Policy iteration for factored MDPs. In Proceedings of
the Sixteenth International Conference on Uncertainty in Artificial Intelligence, pages
326–334.

Konda, V. (2002). Actor-Critic Algorithms. PhD thesis, Massachusetts Institute of Tech-
nology.

Korf, R. (1985). Macro-operators: A weak method for learning. Artificial Intelligence,
26(1):35–77.

La-Mura, P. (2000). Game networks. In Proceedings of the Sixteenth International Con-
ference on Uncertainty in Artificial Intelligence.

Laird, J., Rosenbloom, P., and Newell, A. (1986). Chunking in SOAR: The anatomy of a
general learning mechanism. Machine Learning, 1:11–46.

Lesser, V., Ortiz, C., and Tambe, M. (2003). Distributed Sensor Networks: A Multiagent
Perspective. Kluwer Academic Publishers.

Lin, L. (1993). Reinforcement Learning for Robots using Neural Networks. PhD thesis,
Carnegie Mellon University.

Littman, M. (1994). Markov games as a framework for multiagent reinforcement learning.
In Proceedings of the Eleventh International Conference on Machine Learning, pages
157–163.

Littman, M. (2001). Friend-or-foe Q-learning in general-sum games. In Proceedings of the
Eighteenth International Conference on Machine Learning, pages 322–328.

Littman, M., Kearns, M., and Singh, S. (2002). An efficient exact algorithm for singly con-
nected graphical games. In Proceedings of Advances in Neural Information Processing
Systems 14, pages 817–824. MIT Press.

Mahadevan, S. (1996). Average reward reinforcement learning: foundations, algorithms,
and empirical results. Machine Learning, 22:159–196.

Mahadevan, S. and Connell, J. (1992). Automatic programming of behavior-based robots
using reinforcement learning. Artificial Intelligence, 55:311–365.

Mahadevan, S., Khaleeli, N., and Marchalleck, N. (1997a). Designing agent controllers
using discrete-event Markov models. In Proceedings of the AAAI Fall Symposium on
Model-Directed Autonomous Systems.

Mahadevan, S., Marchalleck, N., Das, T., and Gosavi, A. (1997b). Self-improving factory
simulation using continuous-time average reward reinforcement learning. In Proceed-
ings of the Fourteenth International Conference on Machine Learning, pages 182–190.

Mannor, S., Menache, I., Hoze, A., and Klein, U. (2004). Dynamic abstraction in re-
inforcement learning via clustering. In Proceedings of the Twenty-First International
Conference on Machine Learning, pages 560–567.

132

Marbach, P. (1998). Simulated-Based Methods for Markov Decision Processes. PhD thesis,
Massachusetts Institute of Technology.

Mataric, M. (1997). Reinforcement learning in the multi-robot domain. Autonomous
Robots, 4:73–83.

McGovern, A. and Barto, A. (2001). Automatic discovery of subgoals in reinforcement
learning using diverse density. In Proceedings of the Eighteenth International Confer-
ence on Machine Learning, pages 361–368.

Mealeau, N., Peshkin, L., Kim, K.-E., and Kaelbling, L. (1999). Learning finite-state
controllers for partially observable environments. In Proceedings of the Fifteenth Inter-
national Conference on Uncertainty in Artificial Intelligence, pages 427–436.

Menache, I., Mannor, S., and Shimkin, N. (2002). Q-cut dynamic discovery of subgoals
in reinforcement learning. In Proceedings of the Thirteenth European Conference on
Machine Learning, pages 295–306.

Miller, W., Sutton, R., and Werbos, P. (1990). Neural Networks for Control. MIT Press.

Moore, A. and Atkeson, C. (1993). Prioritized sweeping: Reinforcement learning with less
data and less real time. Machine Learning, 13:103–130.

Morimoto, J. and Doya, K. (2001). Acquisition of stand-up behavior by a real robot using
hierarchical reinforcement learning. Robotics and Autonomous Systems, 36:37–51.

Ng, A. (2003). Shaping and Policy Search in Reinforcement Learning. PhD thesis, Univer-
sity of California at Berkeley.

Ng, A., Harada, D., and Russell, S. (1999). Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceedings of the Sixteenth International
Conference on Machine Learning, pages 278–287.

Ng, A. and Jordan, M. (2000). Pegasus: A policy search method for large MDPs and
POMDPs. In Proceedings of the Sixteenth International Conference on Uncertainty in
Artificial Intelligence, pages 406–415.

Ng, A., Kim, H., Jordan, M., and Sastry, S. (2004). Autonomous helicopter flight via
reinforcement learning. In Proceedings of Advances in Neural Information Processing
Systems 16. MIT Press.

Oates, T. and Cohen, P. (1996). Searching for planning operators with context dependent
and probabilistic effects. In Proceedings of the Thirteenth National Conference on Arti-
ficial Intelligence, pages 863–868.

Ortiz, L. and Kearns, M. (2003). Nash propagation for loopy graphical games. In Proceed-
ings of Advances in Neural Information Processing Systems 15. MIT Press.

Owen, G. (1995). Game Theory. Academic Press.

133

Parr, R. (1998). Hierarchical Control and Learning for Markov Decision Processes. PhD
thesis, University of California at Berkeley.

Peshkin, L., Kim, K., Meuleau, M., and Kaelbling, L. (2000). Learning to cooperate via
policy search. In Proceedings of the Sixteenth International Conference on Uncertainty
in Artificial Intelligence, pages 489–496.

Pickett, M. and Barto, A. (2002). Policyblocks: An algorithm for creating useful macro-
actions in reinforcement learning. In Proceedings of the Nineteenth International Con-
ference on Machine Learning, pages 506–513.

Precup, D. (2000). Temporal Abstraction in Reinforcement Learning. PhD thesis, Univer-
sity of Massachusetts Amherst.

Puterman, M. (1994). Markov Decision Processes. Wiley Interscience.

Pynadath, D. and Tambe, M. (2002). The communicative multiagent team decision prob-
lem: Analyzing teamwork theories and models. Journal of Artificial Intelligence Re-
search, 16:389–426.

Rohanimanesh, K. and Mahadevan, S. (2003). Learning to take concurrent actions. In
Proceedings of Advances in Neural Information Processing Systems 15. MIT Press.

Rummery, G. and Niranjan, M. (1994). On-line Q-learning using Connectionist Systems.
Technical Report CUED/F-INFENG/TR 166, Engineering Department, Cambridge Uni-
versity.

Sacerdoti, E. (1974). Planning in a hierarchy of abstraction spaces. Artificial Intelligence,
5(2):115–135.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3:210–229.

Saria, S. and Mahadevan, S. (2004). Probabilistic plan recognition in multiagent systems.
In Proceedings of the Fourteenth International Conference on Automated Planning and
Scheduling, pages 12–22.

Schneider, J., Wong, W., Moore, A., and Riedmiller, M. (1999). Distributed value func-
tions. In Proceedings of the Sixteenth International Conference on Machine Learning,
pages 371–378.

Schwartz, A. (1993). A reinforcement learning method for maximizing undiscounted re-
wards. In Proceedings of the Tenth International Conference on Machine Learning,
pages 298–305.

Seri, S. and Tadepalli, P. (2002). Model-based hierarchical average-reward reinforcement
learning. In Proceedings of the Nineteenth International Conference on Machine Learn-
ing, pages 562–569.

134

Simon, H. A. (1981). The Sciences of the Artificial. MIT Press. second edition.

Simsek, O. and Barto, A. (2004). Using relative novelty to identify useful temporal ab-
stractions in reinforcement learning. In Proceedings of the Twenty-First International
Conference on Machine Learning, pages 751–758.

Singh, S. (1992). Transfer of learning by composing solutions of elemental sequential
tasks. Machine Learning, 8:323–339.

Singh, S. and Bertsekas, D. (1996). Reinforcement learning for dynamic channel alloca-
tion in cellular telephone systems. In Proceedings of Advances in Neural Information
Processing Systems 9, pages 974–980.

Singh, S., Jaakkola, T., Littman, M., and Szepesvari, C. (2000a). Convergence results for
single-step on-policy reinforcement learning algorithms. Machine Learning, 38(3):287–
308.

Singh, S., Kearns, M., and Mansour, Y. (2000b). Nash convergence of gradient dynamics
in general-sum games. In Proceedings of the Sixteenth International Conference on
Uncertainty in Artificial Intelligence, pages 541–548.

Stone, P. and Veloso, M. (1999). Team-partitioned, opaque-transition reinforcement learn-
ing. In Proceedings of the Third International Conference on Autonomous Agents, pages
206–212.

Sugawara, T. and Lesser, V. (1998). Learning to improve coordinated actions in cooperative
distributed problem-solving environments. Machine Learning, 33:129–154.

Sutton, R. (1988). Learning to predict by the methods of temporal differences. Machine
Learning, 3:9–44.

Sutton, R. (1991). Dyna, an integrated architecture for learning, planning, and reacting.
SIGART Bulletin, 2:160–163.

Sutton, R. and Barto, A. (1998). An Introduction to Reinforcement Learning. MIT Press.

Sutton, R., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial Intelligence, 112:181–
211.

Tadepalli, P. and Ok, D. (1996). Auto-exploratory average reward reinforcement learning.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages
881–887.

Tadepalli, P. and Ok, D. (1998). Model-based average reward reinforcement learning.
Artificial Intelligence, 100:177–224.

Tan, M. (1993). Multiagent reinforcement learning: Independent vs. cooperative agents.
In Proceedings of the Tenth International Conference on Machine Learning, pages 330–
337.

135

Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program, achieves master-
level play. Neural Computation, 6:215–219.

Thrun, S. and Schwartz, A. (1995). Finding structure in reinforcement learning. In Pro-
ceedings of Advances in Neural Information Processing Systems 8, pages 385–392.

Van-Roy, B. (1998). Learning and Value Function Approximation in Complex Decision
Processes. PhD thesis, Massachusetts Institute of Technology.

Vickrey, D. and Koller, D. (2002). Multiagent algorithms for solving graphical games.
In Proceedings of the Eighteenth National Conference on Artificial Intelligence, pages
345–351.

Wang, G. and Mahadevan, S. (1999). Hierarchical optimization of policy-coupled semi-
Markov decision processes. In Proceedings of the Sixteenth International Conference on
Machine Learning, pages 464–473.

Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, Kings College, Cam-
bridge, England.

Weiss, G. (1999). Multiagent Systems: A Modern Approach to Distributed Artificial Intel-
ligence. MIT Press.

Williams, J. and Singh, S. (1999). Experiments with an algorithm which learns stochastic
memoryless policies for POMDPs. In Proceedings of Advances in Neural Information
Processing Systems 11, pages 1073–1079.

Williams, R. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256.

Xuan, P. and Lesser, V. (2002). Multiagent policies: from centralized ones to decentralized
ones. In Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 1098–1105.

Xuan, P., Lesser, V., and Zilberstein, S. (2001). Communication decisions in multiagent co-
operation: Model and experiments. In Proceedings of the Fifth International Conference
on Autonomous Agents, pages 616–623.

Zhang, W. and Dietterich, T. (1995). A reinforcement learning approach to job-shop
scheduling. In Proceedings of the Fourteenth International Joint Conference on Arti-
ficial Intelligence, pages 1114–1120.

136

